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Abstract

Advocates of the instant-runoff voting system (IRV) often argue that it is less sus-
ceptible to strategic voting than plurality. Is this true? More generally, how should
we define and measure a voting system’s susceptibility to strategic voting? Previous
research in this area is unsatisfying, partly because it ignores the uncertainty voters
face when they vote; we introduce a better approach. We find that, when beliefs are
precise and other voters are expected to vote sincerely, more voters would benefit
from voting strategically in IRV than in plurality (contrary to what advocates sug-
gest). The anticipated benefit for these voters is small, however, and for the average
voter the benefit of taking strategy into account is many times larger in plurality
than IRV – especially when beliefs are imprecise and/or voters expect other vot-
ers to behave strategically. The methods we introduce can be used to study other
properties of voting systems when voters are strategic.
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The instant-runoff voting system (IRV) has recently been a popular reform proposal in

several countries. In IRV (also known by several other terms, including ranked-choice voting and

the alternative vote2), voters rank the candidates and the winner is determined by successively

eliminating less-popular candidates. Large-scale referendums to introduce forms of IRV failed

in the UK in 2011 and Massachusetts in 2020, but succeeded in San Francisco in 2002, Maine in

2016, and New York City in 2019. According to its advocates (and in comparison to plurality),

IRV chooses winners with broader support, discourages negative campaigning, and minimizes

strategic voting, among other benefits.3

Over the past few decades, researchers have studied many features of IRV (e.g. Jansen,

2004; Farrell and McAllister, 2006; Fraenkel and Grofman, 2006; Horowitz, 2006; John, Smith,

and Zack, 2018; McDaniel, 2018), including the strategies parties and candidates pursue in that

system (Sharman, Sayers, and Miragliotta, 2002; Donovan, Tolbert, and Gracey, 2016; Coakley

and Fraenkel, 2017; Reilly, 2018; Kousser, 2019; Reilly and Stewart, 2021). Less attention has

been paid to the strategic incentives faced by voters deciding how to vote and, by extension, by

elites trying to influence those choices (Cox, 1997, p. 148). When a candidate is eliminated in

IRV, ballots ranking that candidate first are effectively transferred to the next-ranked candidate.

This suggests that the incentive to abandon hopeless candidates is lower in IRV than in plurality.

Consistent with this, a variety of evidence from Australia and elsewhere suggests voters in IRV

tend to cast sincere ballots more so than in plurality (Farrell and McAllister, 2006; Van der

Straeten et al., 2010; Blais et al., 2012; Simmons, Gutierrez, and Transue, 2022). But IRV

also allows for other types of strategic voting not present under plurality: for example, voters

can in some circumstances help elect their preferred candidate by ranking their least-preferred

candidate first (e.g. Fishburn and Brams, 1983; Dummett, 1984). Existing work does not

clarify whether voters vote sincerely more often in IRV than in plurality because there are fewer

opportunities to benefit from strategic voting in IRV or because voters are less likely to perceive

such opportunities. It therefore remains an open question whether, for reasonable assumptions

2IRV’s other names include ranked-choice voting (RCV), the alternative vote (AV), preferential voting, single-
transferable vote (STV), and the Hare system. We use instant-runoff voting because the term is widely used and
more descriptive than “ranked-choice voting” or “the alternative vote”.

3See e.g. FairVote’s “Ranked Choice Voting 101” at https://www.fairvote.org/rcv#rcvbenefits, visited 1
August 2020.
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about the circumstances voters (and elites) face in real elections, the opportunities for strategic

voting are more constrained in IRV than in plurality. Dummett (1984), for example, ventured

that “a voter who has understood the workings of [IRV], and who has some information about

the probable intentions of the others, will have nearly as much incentive to vote strategically.”

As we explain below, this conjecture has never been satisfactorily tested, because previous

efforts fail to capture the uncertainty implied in the scenario Dummett imagines.

In this paper we aim to rigorously assess the common claim that IRV is less susceptible to

strategic voting than plurality; to do so, we develop concepts and tools that can help address

other questions about voting systems and strategic voting. We define a voting system’s sus-

ceptibility to strategic voting as the expected benefit to the voter from voting strategically (i.e.

casting the expected-utility maximizing vote) instead of voting sincerely (i.e. simply reporting

the sincere preference). We argue that susceptibility to strategic voting is an important prop-

erty of voting systems: the greater the benefit from voting strategically, the more effort we

might expect voters and elites to devote to poll-watching and strategizing, and the more voting

results could diverge from preferences in the electorate due to strategic voting. To measure

susceptibility to strategic voting in realistic scenarios, we start with preference data from 160

election surveys (a total of around 220,000 voters); we then compute, for each voter in each sur-

vey, whether and to what extent the voter would benefit from voting strategically given a range

of assumptions about how well the voter is able to anticipate the outcome (i.e. uncertainty)

and how widespread strategic voting is among other voters in the survey. By doing this both

for plurality and for IRV and averaging across surveys, we generate measures of each voting

system’s susceptibility to strategic voting.

Our analysis shows that, for a wide range of assumptions, IRV is less susceptible to strategic

voting on average than plurality voting, although the opportunities to benefit from strategic

voting in IRV may be more widespread than previously recognized. If we assume that voters

have relatively precise beliefs about election outcomes and strategic voting is not widespread, the

average gain in expected utility from voting strategically (rather than always sincerely) is about

five times higher in plurality compared to IRV; that gap becomes wider when we assume that

voters have less precise beliefs about election outcomes and strategic voting is more widespread.
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We also find that Dummett and other IRV skeptics are correct in supposing that informed

voters might find ample opportunities for strategic voting in IRV: when beliefs are precise and

other voters vote sincerely, the proportion of voters who benefit from strategic voting is higher

on average in IRV, and much higher for some preference profiles. But when beliefs become less

precise, or when other voters vote more strategically, these opportunities for strategic voting

tend to disappear. Our baseline analysis holds fixed voter preference distributions as the voting

system changes, but in extensions we show that the main conclusions are robust to allowing the

voting system to affect preferences or the number of parties competing.

Although we are not the first to compare opportunities for strategic voting across voting

systems (e.g. Chamberlin and Featherston, 1986; Saari, 1990; Bartholdi and Orlin, 1991; Green-

Armytage, Tideman, and Cosman, 2016), our approach improves on previous efforts in two

significant ways.4 Most importantly, to our knowledge we are the first to assess susceptibility to

strategic voting while taking into account the uncertainty that voters face at the time they decide

how to vote. Starting with the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite,

1975), previous research evaluating the possibility of strategic manipulation has assumed that

voters know other voters’ votes.5 Ignoring uncertainty simplifies many aspects of the problem,

but it may produce misleading conclusions about opportunities for strategic voting in actual

elections: even if a voting system sometimes creates situations where a voter would regret a

sincere vote (as Gibbard-Satterthwaite shows it must), it may very rarely create situations

where a voter could anticipate (given realistic uncertainty) that a non-sincere vote would be

optimal, even if she perfectly understands how the system operates.

Our second key innovation is to model voters’ beliefs in a way that accounts for strategic

behavior by other voters. Previous researchers have assessed opportunities for strategic ma-

nipulation assuming that everyone votes sincerely. Again, this simplification may mislead: the

incentive to vote strategically may be stronger or weaker when we take into account others’

strategic behavior. To capture a range of possibilities about the prevalence of strategic voting

4We also use a larger and more representative set of preference distributions, as explained below.
5As explained below, this statement applies to research in social choice theory and computational social choice

that compares manipulability of voting systems. The study of strategic voting in economics and political science
has always taken uncertainty seriously, but it has not sought to measure and compare susceptibility to strategic
voting across voting systems.
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in the electorate, we introduce a model of belief formation in which strategic voters with realis-

tically uncertain beliefs respond myopically to a sequence of polls; we measure the incentive to

vote strategically at each stage of this process, with the first iteration capturing the assumption

of sincere voting and later iterations converging on a strategic voting equilibrium. Our approach

thus includes the assumptions typical of previous work (no uncertainty, sincere voting) as a spe-

cial case but allows us to relax those assumptions to account for uncertainty and strategic voting

by other voters. This approach reveals an important qualitative difference between IRV and

plurality: in plurality the incentive to vote strategically tends to increase as others vote more

strategically (because trailing candidates become more hopeless), while in IRV the reverse is

true. More generally, these innovations make it possible to analyze many features of voting

systems (such as aggregate voter utility or the probability of electing a Condorcet winner, both

of which we consider below) while relaxing the assumption that voters vote sincerely.

We emphasize that this paper focuses on the incentive to vote strategically, not on the actual

practice of strategic voting. Our approach is designed to measure the extent of opportunities for

strategic voting, leaving aside for now the question of whether these opportunities are recognized

and acted upon. Voters who cannot reason through the strategic calculus or apply a simple

heuristic may nonetheless be able to identify an opportunity for strategic voting using a voting

advice application;6 political parties may also inform voters about such opportunities or take

action on their own, e.g. by dropping out of a race or “playing dead” if they anticipate being a

spoiler.7 Our analysis provides insight into how far such efforts could go in IRV and plurality

(and in other systems, using the same tools) if voters and/or elites were able to uncover the

latent opportunities for strategic voting.

6A strategic voting advice website is described in Kate Proctor and Rowena Mason, “Tactical voting web-
site criticised for ‘bogus’ advice”, October 30, 2019, https://www.theguardian.com/politics/2019/oct/30/

tactical-voting-could-deliver-remain-victory-in-election-study
7In the 2018 Wentworth by-election in Australia, for example, Labor leadership instructed their candidate to

campaign less energetically to help an independent candidate defeat the Liberal candidate (Pyne, 2020).
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1 Orientation

1.1 Why measure susceptibility to strategic voting?

Electoral systems are an important part of the translation of voter preferences into political

outcomes. While there are many such outcomes of interest, we focus on what is arguably the

first step in the translation process: the conversion of preferences into votes.

In particular, we examine how susceptible voting systems are to strategic (or tactical) voting

(e.g. Saari, 1990; Tideman, 2018), meaning the degree to which they reward voters who submit

a vote that differs from their sincere preference, i.e. a “misaligned vote” (Kawai and Watanabe,

2013). Although no reasonable voting system is completely immune to strategic voting (Gib-

bard, 1973; Satterthwaite, 1975), it remains an open question to what extent incentives to vote

strategically exist in realistic scenarios. As Cox (1997, p. 11) writes:

[The Gibbard-Satterthwaite theorem] is not as useful to political scientists as it might

be, because its conclusion is politically ambiguous. The theorem merely alerts one

to the possibility that there may be strategic voting under any democratic electoral

system, while saying nothing about either the political consequences of that strategic

voting, or about how much strategic voting one should expect.

By estimating the degree to which voting rules create incentives to cast insincere votes, we

intend to render the (largely theoretical) literature on manipulability more useful to a broader

set of political scientists, and to connect it to a growing empirical literature that evaluates

electoral systems across multiple characteristics and desiderata. In the rest of this section, we

discuss why we think manipulability should be one of those desiderata and why previous work

on manipulability is unsatisfying.

When considering a voting system’s susceptibility to strategic voting, two aspects are poten-

tially concerning. First, one might be concerned about ex post manipulability, i.e. the frequency

with which voters would regret a sincere vote after the results are announced. It is natural and

unavoidable for voters who favored unsuccessful candidates to feel disappointment with the out-

come, but it seems desirable to avoid situations where voters could have obtained a better result

by submitting a misaligned vote, in part because it undermines the perceived legitimacy of the
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result and in part because it may cause voters to feel regret about their vote. In some cases,

such as after the 2000 U.S. presidential election, voters can easily detect the missed opportunity

to manipulate and feel regret about their choices;8 in others, such as after the 2009 Burlington

(VT) mayoral election, the opportunity to manipulate is apparent to experts but possibly not

to voters.9

Second, one can also be concerned about the ex ante manipulability of a voting system,

meaning the frequency with which voters could obtain a better expected election outcome by

submitting a misaligned vote. A system that is more ex ante manipulable raises several concerns.

To the extent that voters are aware of the opportunity to manipulate the outcome and submit

misaligned votes, the aggregated ballot counts may diverge from the preference distribution in

the electorate, making the election difficult to interpret (Satterthwaite, 1973; Riker, 1982; Green-

Armytage, Tideman, and Cosman, 2016): did the voters who voted for candidate A really prefer

that candidate, or did they vote for A for strategic reasons? Voters evidently derive expressive

benefits from voting for candidates they sincerely support (Hamlin and Jennings, 2011; Pons

and Tricaud, 2018), so a system that induces widespread misaligned voting also deprives many

voters of these expressive benefits. Furthermore, there is evidence that some types of voters

(e.g. poorer ones) are less able or inclined to vote strategically (Eggers and Vivyan, 2020),

which suggests that a system that is more ex ante manipulable disadvantages these voters to

a greater extent.10 Finally, a voting system that is more ex ante manipulable creates stronger

incentives for voters to pay attention to polls, for media outlets to conduct polls, and for parties

to spread polling information (and misinformation); all of this effort might be better spent

on other activities, such as scrutinizing candidates’ track records or policy proposals (though

see Dowding and Van Hees, 2008). Interpretability, expressive utility, fairness, and efficiency

arguments thus all favor voting systems that are less ex ante manipulable.

8For example, see Darby Saxbe, “A Letter to a Bernie-or-Bust Voter”, Slate, May 24, 2016 https://slate.

com/news-and-politics/2016/05/a-letter-to-a-bernie-or-bust-voter.html.
9See Anthony Gierzynski, Wes Hamilton, and Warren D. Smith, “Burlington Vermont 2009 IRV mayor elec-

tion”, March 2009 https://rangevoting.org/Burlington.html.
10It is not known how heterogeneity in strategic behavior varies across voting systems, but it is a reasonable

guess that voting systems that produce lower incentives to vote strategically also produce less heterogeneity in
observed strategic behavior.
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1.2 The limitations of previous research on susceptibility to strategic voting

Perhaps surprisingly, previous research on susceptibility to strategic voting focuses exclusively

on ex post manipulability. The Gibbard-Satterthwaite Theorem states that any reasonable

voting system is ex post manipulable in some circumstance; the manipulability literature (e.g.

Chamberlin and Featherston, 1986; Saari, 1990; Favardin and Lepelley, 2006; Ornstein and

Norman, 2014; Green-Armytage, Tideman, and Cosman, 2016; Tideman, 2018) quite reasonably

builds on this result by measuring the proportion of likely election outcomes that are ex post

manipulable. More precisely, both the manipulability literature and the social choice literature

from which it emerges assume perfect information about the election result, which describes

the situation after the election takes place but is plainly unrealistic as a description of the

environment in which voters typically decide how to vote. The manipulability literature is also

unsatisfying because it checks for opportunities to manipulate when everyone votes sincerely,

which is unrealistic at least in plurality elections, where a substantial proportion of voters are

believed to cast misaligned votes (e.g. Kawai and Watanabe, 2013).

The lack of research on the ex ante manipulability of voting systems would be unproblematic

if ex ante and ex post approaches always produced the same conclusions, but they do not. For

example, consider a plurality election in which candidates A, B, and C receive nearly equal

support, with candidate A defeating candidate B by just one vote and C finishing slightly

behind B. Clearly ex post manipulation is possible: for example, two supporters of candidate

C who prefer B over A could elect B by switching their votes from C to B. But given a poll

predicting the same near three-way tie, there is little ex ante reason for these voters to switch

to B: each pair of candidates is approximately equally likely to be tied for first, so switching

from C to B is just as likely to backfire (in the event of a B-C tie) or to lead to a wasted vote

(in the event of an A-C tie) as it is to pay off (in the event of an A-B tie). More generally,

any system that rewards a misaligned vote in one set of circumstances but punishes the same

vote in another similar set of circumstances will look more manipulable ex post than ex ante,

because the ex ante perspective considers both the benefits and risks of a misaligned vote.11

11A similar critique applies to research (mainly in computer science) assessing the complexity of manipulation
in various voting systems (see Faliszewski and Procaccia, 2010, for a review). Bartholdi and Orlin (1991) showed
that the problem of computing the optimal vote in IRV is NP-complete given perfect information and thus may
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By contrast, the game theoretic literature in political science and economics treats strategic

voting as an instance of choice under uncertainty (e.g. Myerson and Weber, 1993; Cox, 1997;

Aldrich, Blais, and Stevenson, 2018) and often focuses on characterizing the equilibrium of vot-

ing games (e.g. Fey, 1997; Laslier, 2009; Bouton, 2013). To our knowledge, no previous research

has applied this literature’s view of strategic voting (which takes account of uncertainty and

considers how voters’ incentives depend on other voters’ behavior) to the problem of compar-

ing voting systems’ susceptibility to strategic voting. In doing so, we hope to provide a more

complete picture of how different electoral systems translate preferences into votes, which is an

important factor (but of course not the only one) for policymakers and reformers to consider.

2 Susceptibility to strategic voting: a new approach

We seek to measure the extent to which different voting systems encourage strategic voting from

an ex ante perspective: that is, given information voters might have before an election takes

place, to what extent might voters expect to be rewarded for casting a misaligned vote? In this

section we explain our approach, starting with defining strategic voting and susceptibility to

strategic voting before moving to issues of operationalization.

2.1 Strategic voting as expected utility maximization

Following the rational choice tradition (e.g. McKelvey, 1972; Cox, 1997), we view strategic voting

as an instance of choice under uncertainty. In that framework, voters have preferences over the

candidates competing (represented by a Von Neumann-Morgenstern utility function) and beliefs

about the probability of various election outcomes (represented by a probability density/mass

function). Voting strategically means choosing the ballot that, given preferences and beliefs,

yields the highest expected utility; by contrast, voting sincerely means simply choosing the

ballot that most closely matches one’s preferences. A misaligned vote is a vote that differs

from the voter’s sincere preference; strategic voting thus implies casting a misaligned vote in

some circumstances, while sincere voting does not. Our terminology reflects that in Kawai and

be intractable as the number of voters and candidates increases. Conitzer, Sandholm, and Lang (2007) show
that manipulation in IRV given perfect information is not hard (in the complexity sense) with a fixed number of
candidates, but may be hard when we introduce uncertainty.
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Watanabe (2013); readers should note, however, that others have used “strategic vote/voting”

to mean what we refer to as “misaligned vote/voting.”

More formally, suppose an election takes place involving K candidates c1, c2, . . . , cK in which

voters may submit one of B distinct ballots. Voter i’s utility if candidate cj is elected is given by

a utility function ui(cj). Let bi denote the ballot submitted by voter i, let v−i = (v1, v2, . . . , vB)

indicate the proportion of other voters casting each distinct ballot (where
∑

v−i = 1), and

let w(bi,v−i) ∈ {c1, c2, . . . , cK} denote the winning candidate when i submits bi and others’

votes are given by v−i. Finally, let f(v−i) denote beliefs about election outcomes, specified as a

probability mass function defined over the sample space of v−i. Then i’s expected utility from

casting ballot bi is

ui(bi) ≡
∑
v−i

ui (w (bi,v−i)) f(v−i) (1)

and voting strategically means choosing b∗i = arg maxbi ui(bi).

2.2 Susceptibility to strategic voting

We will say that a voting system is susceptible to strategic voting to the extent that it puts

voters in circumstances where, given information available before the election, their expected

utility from strategic voting is higher than their expected utility from sincere voting. Compared

to other definitions based on the possibility of ex post manipulation, this definition speaks more

directly to concerns that voters might submit misaligned ballots or exert effort determining

whether they should do so.

Let δi ≡ ui(b∗i )− ui(bsincere
i ) denote the gain in expected utility voter i receives from voting

strategically instead of sincerely (where b∗i and bsincere
i denote a strategic vote and sincere vote,

respectively). This gain is zero if b∗i = bsincere
i and positive otherwise. Our main estimand is

E [δi], where expectations are taken over circumstances we might expect voters to face, i.e.

combinations of preferences and beliefs that might be observed in a given system. We will

also investigate the probability that a misaligned vote is optimal (the “prevalence” of strategic

voting incentives) and the expected benefit of voting strategically conditional on a misaligned

vote being optimal (the “magnitude” of strategic voting incentives), which can be seen as

components of E [δi] and/or alternative measures of susceptibility to strategic voting.
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2.3 Estimating susceptibility to strategic voting

Given this definition of susceptibility to strategic voting, we might operationalize and estimate

it in various ways. Ideally we might run a large randomized control trial in which we randomly

assign voting systems to a large number of polities and, after allowing time for voters and candi-

dates to respond to their assigned voting system, use a survey to measure voters’ preferences and

beliefs and compare across systems. More realistically, we could conduct observational studies

comparing strategic voting incentives across systems in actual use; in practice, however, it can

be difficult to disentangle differences in susceptibility to strategic voting from differences in the

polities where different systems are used, particularly for uncommon systems.12 Susceptibility

to strategic voting (and voters’ responses to strategic voting incentives) could also be studied in

the lab (e.g. Van der Straeten et al., 2010; Hix, Hortala-Vallve, and Riambau-Armet, 2017).13

Rather than study actual elections (whether as part of an experiment or an observational

study), we study hypothetical elections simulated using empirical preference data and a novel

model of belief formation. These simulations require stronger assumptions than empirical alter-

natives, but they offer a practical way to study the properties of even obscure voting methods

without intervening in real elections. The next few paragraphs explain our assumptions about

preferences and beliefs; Appendix A explains how we compute pivot probabilities from beliefs

and compute the expected utility of each ballot for each voter in our surveys.

2.3.1 Preferences from election surveys

We measure voter preferences using numerical ratings of parties from 160 national election

surveys in 56 unique countries, collected through the Comparative Study of Election Systems

(CSES) waves 1-4 (1996-2016).14 In each survey, respondents are asked to rate each of the main

parties on a 0 to 10 scale, where 0 means the respondent “strongly dislikes” that party and

10 means the respondent “strongly likes” that party. In our baseline analysis we retain these

12Several studies compare strategic voting in PR and plurality systems (e.g. Bargsted and Kedar, 2009; Abram-
son et al., 2010). Blais (2004) and Dolez and Laurent (2010) study strategic voting in runoff elections and Farrell
and McAllister (2006) discusses instances of apparent ex post manipulability in Australian IRV elections.

13Van der Straeten et al. (2010) find that about 10% of ballots in IRV experiments are misaligned. They do not
attempt to determine whether a misaligned vote is justified in IRV, noting the absence of theoretical guidance
on this question in the five-candidate case.

14See http://www.cses.org. There are 162 election surveys in these four waves, but we exclude Belarus in
2008 and Lithuania in 1997 because they record preferences on only two parties.
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numerical ratings for the three largest parties in each survey (based on national vote share) and

add a small amount of random noise (so that there is a unique sincere vote for every voter) to

form 160 distinct preference distributions, one for each survey. (Green-Armytage (2014) and

Eggers and Vivyan (2020) discuss the suitability of party ratings as utility measures.) The

average survey has just under 1,400 respondents who rate at least these three parties, for a

total of over 220,000 usable respondents across all the surveys. In what follows we analyze

each survey separately, asking e.g. what proportion of voters in Canada in 2011 would benefit

from an insincere vote if the election were held under IRV vs. under plurality. To combine the

results across surveys, we weight case-specific estimates by country population and the number

of surveys the country contributes to the CSES,15 thus characterizing incentives for the typical

citizen across the countries in the CSES.

Although the preference distributions we use are drawn from empirical surveys, and can be

viewed as more realistic than e.g. assuming single-peaked or “divided-majority” preferences, we

emphasize that each preference distribution is specific to a given election in a given country,

and is thus the product of many factors including the electoral system in operation. In actual

elections, voters’ preferences over candidates/parties (denoted ui(cj) above) reflect the positions

parties adopt and the characteristics of party leaders, among other things; these features, as

well as the number and type of parties that compete, are well known to be impacted by the

electoral system. A “general equilibrium” comparison of voting systems might model the effect

of the voting system on (at least) party entry and positioning to determine how the preference

distribution responds to the electoral system. Our approach is more “partial equilibrium”: we

use party ratings from recent electoral surveys to capture typical party preferences in existing

systems, and we hold fixed these preferences as we compare alternative voting rules. Our

analysis thus aims to capture how strategic voting incentives differ across systems when we

hold fixed the distribution of preferences and thus (implicitly) the parties competing and their

strategies.

To get an idea of how much our conclusions might differ if we endogenized preferences, we can

15Specifically, we weight voter i in country j by
wiNj

nj
, where wi is the normalized survey weight assigned to

respondent i (with
∑
wi = 1 in each poll), Nj is country j’s population, and nj is the number of surveys from

country j in the dataset.
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compare preference distributions in plurality elections to those in PR elections; these are the two

most common systems and ones for which readers may expect differences. (For example, parties

in PR systems are thought to more clearly differentiate themselves from each other (Norris et al.,

2004), so we might expect a bigger spread in party ratings and more multidimensionality.) We

consider four metrics: the average top rating (i.e. the highest rating assigned to any party,

averaged over respondents); the average bottom rating; the average difference between top

rating and bottom rating; and a measure of unidimensionality.16 Figure A.4 shows the densities

for each system and each metric. Although some differences are apparent (e.g. there are more

cases with high average top ratings in PR than in plurality), Kolmogorov-Smirnov tests show

no significant differences in these distributions across systems;17 in a regression of each measure

on dummies for PR and IRV (so plurality is the omitted group), all electoral system coefficients

are insignificant for all measures. (See results in Appendix ??.) This indicates that preference

distributions are not too dissimilar across electoral systems, and further suggests that a more

elaborate procedure that endogenizes preferences might produce similar results to ours.
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Figure 1: Distribution of preference profiles across plurality and PR systems in CSES

To further address the effect of electoral systems on preference distributions, we will extend

our baseline analysis below by including four parties and conditioning on the existing electoral

system, which lets us speculate about how second-order effects of the electoral system might

influence our conclusions. This allows us, for example, to compare IRV using preferences over

the top four parties found in PR countries to plurality using preferences over the top three

parties found in majoritarian countries. Reassuringly, we find that the results of these analyses

16Let xijk denote the proportion of voters whose preferences are single-peaked if we order the parties ijk. Our
measure is the maximum such value across all orderings.

17KS test p-values are: top .950, bottom .597, difference .391, unidimensionality .721.
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Voter preferences

from election survey

A B C
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...
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More precise beliefs

Less precise beliefs

. . .

(Iteration 1)

Sincere voting

(Iteration 2)

. . .

(Iteration M)

Strategic voting becomes more widespread

Figure 2: Diagram illustrating the iterative polling algorithm

remain consistent with the conclusions of our baseline findings, again suggesting that taking

into account the effect of the electoral system on preferences would not affect our key takeaways.

2.3.2 Beliefs from an iterative polling algorithm

Given a distribution of preferences drawn from an election survey, what beliefs (i.e. distribution

over possible election results) would it be reasonable to assume? As noted above, the standard

approach in manipulability research is to assume perfect information and sincere voting, which

in this case would imply assuming that voters in a given survey know that the election outcome

will reflect the sincere distribution of preferences in that survey. A game theorist might instead

focus on Nash equilibria given some uncertainty about voter actions or the distribution of types:

for plurality, this might imply assuming that voters in a given survey expect almost everyone

to vote for just two candidates.

Rather than focusing on beliefs at either the sincere result or an equilibrium result, we

conduct our analysis for a range of beliefs between these extremes. Following Fisher and Myatt

(2017), we model voters’ common beliefs as a Dirichlet distribution, which can be described

by two parameters: the location (or expected value) v = (v1, v2, . . . , vB),18 with one element

18Beliefs relate to others’ votes (v−i), but we henceforth omit the subscript to lighten notation.
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for each of B possible ballots, and a scalar precision parameter s. For each set of analysis

we choose a value of s from a range informed by recent empirical work: Fisher and Myatt

(2017) find that English voters’ beliefs are characterized by s = 10, while Eggers, Rubenson,

and Loewen (2019) and Eggers and Vivyan (2020) find that forecasters in Canada and the UK

have beliefs characterized by s = 53 and s = 85, respectively.19 Each of the ternary plots in

Figure 2 illustrates Dirichlet beliefs for a three-candidate plurality election. The red dot in each

plot represents the location parameter v; the top row of diagrams illustrate more precise beliefs

(higher s), while the bottom row of diagrams illustrate less precise beliefs (lower s).

For each election survey, we then trace out a sequence of expected results v1,v2, . . . using

a novel iterative polling algorithm as follows. The first expected result v1 is the sincere voting

result, i.e. the proportion of respondents in the survey who would cast each ballot if voting

sincerely. Each subsequent expected result vm is a weighted average of the previous result

(vm−1) and voters’ best response to beliefs centered at the previous result (given belief precision

s), with the weight on voters’ best response given by a mixing parameter λ. Figure 2 illustrates

this progression of beliefs from one iteration to the next given different assumptions about

uncertainty. The sequence may converge on a fixed point, which can be considered a strategic

voting equilibrium. We compute each system’s susceptibility to strategic voting for beliefs

centered at each step along the sequence, which allows readers to assess each voting system

under a range of assumptions about the prevalence of strategic behavior.

The iterative polling algorithm can be interpreted in various ways. It can been be seen as

a model of how (expected) election results change over a series of polls or elections, where we

assume that voters are inattentive (in that only a fraction λ best-respond at each poll/election,

with others sticking to their previous choice) and myopic (in that they do not consider how their

action affects future polls/elections); in this view, strategic incentives we measure at lower or

higher iterations indicate how incentives might evolve over a campaign or over several elections.

(We suspect that observed election results tend to be found somewhere along the sequence

produced by the algorithm; we leave for another paper the task of testing that conjecture and

19As Fisher and Myatt (2017) point out, an observer with an uninformative Dirichlet prior over vote shares
who observes a random sample of s voting intentions has Dirichlet posterior beliefs with precision s; thus s can
be seen as the size of the poll that informs voter beliefs.
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exploring the properties of the algorithm more fully.) It could also be seen as a model of levels

of rationality (Stahl and Wilson, 1994), where the kth iteration captures the beliefs of level-k

voters who assume a distribution of level 1, . . . , k − 1 voters governed by λ;20 in that view, the

strategic incentives we measure at lower or higher iterations are those that would be perceived

by voters with lower or higher degrees of strategic sophistication. More simply, it could be

seen as method of locating a strategic voting equilibrium, which does not require subscribing to

any particular theory of how voters respond to polls and is useful in systems (like IRV) where

equilibrium has not yet been characterized. This method of finding an equilibrium implicitly

contains an equilibrium refinement: it selects an equilibrium that can be reached by a process

of iterative best responses starting at the sincere result. Several authors have used the idea

of iterative best responses to justify refinements to strategic voting equilibria (e.g. Palfrey and

Rosenthal, 1991; Fey, 1997; Myatt, 2007);21 we instead apply iterative best responses as an

analytical tool with results subject to various interpretations.

3 Strategic voting in plurality and IRV elections

To this point we have described a general approach to measuring susceptibility to strategic

voting. Before applying this approach to plurality and IRV elections, we briefly discuss the

qualitative nature of strategic voting in each system.

To begin with, note that rather than considering all possible election outcomes, a strategic

voter can focus on pivot events (Myerson and Weber, 1993), i.e. situations where a single vote

can determine the winner.22 That is, the ballot that maximizes expression 1 when we sum over

all possible outcomes is the same as the ballot that maximizes a version of expression 1 where

we sum over only pivot events. Similarly, the gain from strategic voting compared to sincere

voting δi is the same whether we compute expected utility over all possible outcomes or only

over pivot events.23 To understand strategic voting in plurality and IRV we will therefore focus

20For example, the first iteration captures the beliefs of strategic voters who know the distribution of preferences
and believe other voters are not strategic.

21These authors focus on expectationally stable equilibria as defined by Palfrey and Rosenthal (1991). Our
algorithm will locate a globally expectationally stable equilibrium if there is one.

22In terms of the notation above, pivot events describe {v−i : w(v−i, bi) 6= w(v−i, b
′
i)} for some bi, b

′
i.

23We describe how to calculate the probability of any pivot event in IRV and plurality in Appendix A.2.
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on pivot events.

In a three-candidate plurality election, the relevant pivot events are the three possible ties

for first.24 A strategic voter whose preference over candidates is A � B � C votes B if the

probability of a B-C tie for first is sufficiently high relative to an A-B or A-C tie for first. For

reasonable specifications of beliefs, a candidate expected to finish third or lower is less likely

to be involved in a tie for first than a candidate expected to finish first or second (Fisher and

Myatt, 2017); thus strategic voters tend to abandon trailing candidates, producing Duvergerian

results.25

Now consider a three-candidate IRV election: the candidate who receives the fewest first-

place votes is eliminated, and the winner is the remaining candidate who is ranked higher on the

majority of all ballots (including those that ranked the eliminated candidate first). In such an

election there are twelve relevant pivot events to consider. There are three pairs of candidates

who, having not been eliminated in the “first round”, could be tied in the final tally, such that a

single ballot could determine the outcome; each of these might be called a “second-round” pivot

event. (For example, it could be that C receives the fewest first-place votes and is eliminated,

and A is ranked higher than B on exactly half of all ballots.) Second-round pivot events never

reward misaligned votes: if the winner will be candidate A or B, one cannot do better than

submit a sincere ordering of those two candidates. Then there are nine “first-round” pivot

events in which a pair of candidates ties for second in top rankings, with the identity of the

ultimate winner depending on which one is eliminated. (For example, B and C could be tied

for second in first-place votes, and A would win if C were eliminated but C would win if B

were eliminated.) First-round pivot events do reward misaligned votes. At the pivot event just

mentioned, for example, a voter with preference order A � B � C or A � C � B could elect

A instead of C by ranking the candidates BAC;26 a voter with preference order B � C � A

24By assuming that ties are broken by a pre-arranged process and a tie between candidate A and B is just as
likely as e.g. A leading B by one vote, we can refer to a “tie for first” as the only relevant pivot event for each
pair of candidates.

25Trailing candidates may receive some support in equilibrium from voters who are nearly indifferent between
the frontrunners (Bouton, Castanheira, and Llorente-Saguer, 2017). Our algorithm does allow for this possibility
in theory, but adding even a small amount of random noise in order to break exact ties is sufficient to render
such non-Duvergian outcomes extremely unlikely.

26These are illustrations of non-monotonicity, a characteristic of all runoff systems. The tactic is sometimes
referred to as voting for a “pushover” (Bouton and Gratton, 2015) or a “turkey” (Cox, 1997).
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could elect C instead of A by ranking the candidates CBA. Note, however, that each of these

tactics could backfire if another pivot event took place, including a second-round pivot event.

While there are six ways to rank three candidates, a strategic voter in a three-candidate

IRV election optimally chooses among only three possible ballots: for example, a voter with

preference order A � B � C chooses among ABC, BAC, and CAB. To see why, note that

there are first-round pivot events that reward ranking one’s second or third choice first (examples

appear in the previous paragraph), but the ranking of the other two candidates could only matter

in a second-round pivot event, which never rewards a misaligned vote. In a three-candidate race,

then, the only clear sign that a voter (or a party issuing a how-to-vote card) is strategic is that

the preferred candidate is not ranked first.27

We may shed additional light on strategic voting in IRV by comparing it to strategic voting

in a conventional runoff election, which has been more extensively studied (e.g. Bouton, 2013;

Ornstein and Norman, 2014; Bouton and Gratton, 2015). The two systems are similar in many

respects related to strategic voting, including the possibility of helping one candidate win by

ranking another candidate higher. There are two main differences. First, in conventional runoff

elections a voter could vote for candidate B in the first round and then, after A and B qualify

for the second round, switch to A; this might be attractive if, by voting for B, the voter could

prevent C (a more dangerous opponent for A) from advancing. In IRV, by contrast, the same

voter can help B advance by submitting a BAC ballot, but this effectively commits the voter

to supporting B over A in the second round as well (where the tactic might backfire). Second,

in conventional runoff elections voters have an incentive to help a leading candidate secure a

majority in the first round; this leads to Duvergerian equilibria in Bouton (2013), with only

two candidates winning first-round votes. In an IRV election, where it is not possible to lose

support from one round to the next, this incentive is irrelevant. If candidate A is one vote short

of a first-round majority, then an additional first-place vote could affect the outcome only if

supporters of the third-place candidate never rank A second; but then A is also one vote short

of a second-round majority, so the circumstance is subsumed in a second-round pivot event.

27Generally, the second-to-last ranked candidate should be preferred to the last-ranked candidate; other pairs
could be ranked contrary to the sincere preference.
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4 Analysis

4.1 Iterative polling algorithm

We begin by describing the results of the iterative polling algorithm, which provides the sequence

of expected results that forms the basis of beliefs in our main analysis. When not otherwise

specified we use s = 85 (the level of precision associated with UK election forecasters by Eggers

and Vivyan (2020)) and mixing parameter λ = .05, but we present comparable results for other

parameters in the appendix and our main results with other levels of precision in Figure 5. A

key insight is that the algorithm’s ballot shares converge towards a fixed point in both plurality

and IRV; while this is well known and expected in plurality, the algorithm’s results in IRV

suggest the existence of strategic voting equilibria in IRV, which (to our knowledge) have not

yet been documented. Appendix H contains results for other parameter values; we discuss these

robustness checks at many points below.

Figure 3 uses a ternary diagram to represent the share of first-preference votes in IRV (left)

and plurality (right) in the first hypothetical poll (red dots), i.e. the sincere profile, and the

250th hypothetical poll (blue dots); a gray line traces the intervening polls. In each CSES

case we have labeled the parties such that A has the largest share of top rankings and B the

second highest; the results of the first poll are therefore all in the lower left corner of the ternary

diagram.

In plurality, the iterative polling algorithm traces a path directly from the sincere profile

to a Duvergerian equilibrium in which two parties receive all or nearly all of the votes. (Only

voters who are almost indifferent between the two frontrunners vote for the trailing candidate.)

In almost all cases, the two frontrunners in equilibrium are the parties with the most sincere

preferences (A and B). (The few exceptions were cases where B and C started off nearly tied

in sincere preferences and a substantial proportion of voters abandoned B for A, such that

B trailed C after a few iterations and subsequently lost all support.) In IRV, by contrast,

the iterative polling algorithm in all cases converges on an “interior” point, i.e. one where all

candidates receive some first-preference support. Appendix H confirms that convergence takes

place in all CSES cases in both systems.
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IRV Plurality

state first last

Figure 3: Evolution of ballot share vectors for all 160 CSES election surveys for both IRV (left)
and plurality (right). Red dots indicate the first hypothetical poll result, blue dots indicate the 250th
hypothetical poll result

In plurality, the precision parameter s affects how quickly the algorithm converges: higher

belief precision makes a vote for the trailing candidate more obviously ineffective and thus

speeds desertion of this candidate. (See Figures A.15 and A.16 in the Appendix.) In IRV, by

contrast, s noticeably affects the location of the equilibrium (as shown by Figures A.25 and

A.26). The reason for this difference is that, within the range of s we consider and for results

in the neighborhood of the equilibria we find, the choice of s has a larger impact on relative

pivot probabilities in IRV than in plurality. Near the plurality equilibria, a single pivot event

(a tie between the two frontrunners) is much more likely than the others; s affects how much

more likely, but it cannot reverse the order of pivot events, so the same result (roughly) is an

equilibrium at a range of s. Near IRV equilibria, by contrast, several pivot probabilities are

relevant, and the choice of s can affect not only the relative magnitudes of the pivot probabilities

but also their rank ordering. Thus a vote share vector v that is an IRV equilibrium at one value

of s will not be an IRV equilibrium at another value of s.

The multiplicity of equilibria in plurality is well known, and can be illustrated with our

algorithm: if we replace the starting profile with a result in which candidates B and C are clearly

in the lead, for example, we always end up at the equilibrium where those two candidates win
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almost all votes. In IRV, by contrast, we find that (for a given value of s) the algorithm converges

toward the same point regardless of the starting point, suggesting a unique equilibrium. Figure

4 illustrates this for four CSES cases. In each plot, each red dot indicates a (randomly chosen)

starting point, each gray line traces the path of the algorithm, and each blue dot indicates the

endpoint after 250 iterations. In each of these CSES cases all of the paths appear to lead to the

same point.28 The apparent uniqueness of equilibrium in IRV across 160 cases strongly suggests

the uniqueness of equilibria in IRV more generally and deserves more study.

Germany (2005) United Kingdom (2015)

Australia (2013) France (2012)

Figure 4: Path of first-preference shares along iterative polling algorithm for select cases in IRV from
random starting points (in red) to 60th iteration (blue).

28Figure A.27 in the Appendix shows for all CSES cases that all paths from random starting points are still
converging toward the fixed point we locate when starting from the sincere profile.
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4.2 Susceptibility to strategic voting

Our iterative polling algorithm yields a sequence of expected results v1,v2, . . . ,vM given pre-

cision s and mixing parameter λ for each election survey in the CSES. At each stage of each

sequence, we compute δi (the expected utility benefit from strategic voting vs. sincere voting)

for each voter; averaging this across voters gives us a measure of each system’s susceptibility to

strategic voting.

In Figure 5 we summarize δi across our 220,000 CSES respondents in plurality and IRV in

three different ways. The plots in the left column focus on E[δi] computed within CSES cases

(thin lines) and across all CSES respondents (thick lines, weighted as described in footnote 15)

separately for plurality (orange) and IRV (blue) at each of the first 60 iterations29 of the polling

algorithm (horizontal axis) and different values of the precision parameter s (s = 10 on top,

s = 55 in middle, s = 85 at bottom). Note that δi is measured in the units of the CSES party

ratings (where 0 is “strongly dislike” and 10 is “strongly like”) multiplied by the assumed size

of the electorate; an expected benefit of .4 in an electorate of 1 million, for example, indicates

that the average voter expects to be .4/1,000,000 points (on the 0-10 scale) more pleased with

the winner if she were to switch from sincere voting to strategic voting.

The clear conclusion is that IRV is less susceptible to strategic voting on average than

plurality, in the sense that it creates smaller average incentives to vote strategically. At s = 10

(approximately the level of belief precision Fisher and Myatt (2017) ascribe to UK voters), the

average incentive to vote strategically is low for both systems at beliefs close to the sincere profile

(i.e. to the left of the diagram), but as voters respond strategically to polls the benefit of strategic

voting in plurality increases while the benefit in IRV decreases further. At s = 85 the difference

in expected benefit is marked even at the sincere profile, grows as voters respond strategically

to polls over the first several iterations, and then remains flat with further iterations. More

specifically, at the first iteration the expected benefit of strategic voting in plurality is around

5 times higher than in IRV for s = 85 and 7 times higher for s = 10; by the 60th iteration the

ratio ranges from around 30 (for s = 85) to around 40 (for s = 10).

29There is less change after the first 60 iterations; the results for all 250 iterations at different values of s appear
in Appendix I.
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Figure 5: Expected benefit, magnitude, and prevalence of strategic voting at three values of s (belief
precision)
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Although the size of the difference depends on parameters and assumptions, the conclusion

that IRV is less susceptible to strategic voting on average holds across parameters. Notably,

across all iterations and choices of s, the expected benefit of strategic voting for plurality in

the best case (iteration 1, s = 10) is substantially higher than the expected benefit of strategic

voting for IRV in the worst case (iteration 1, s = 85). Furthermore, sensible departures from

our assumptions about belief formation only exacerbate the average difference between plurality

and IRV: putting some weight on other near-Duvergerian equilibria in plurality (i.e. those where

voters abandon one of the more sincerely popular candidates) would only increase the share of

voters who optimally cast a misaligned vote, making plurality appear even more susceptible to

strategic voting.

To better understand these differences in susceptibility to strategic voting, we decompose

our measure into the magnitude of the benefit (i.e. how much benefit is there for voters who

would benefit from a misaligned vote?) and the prevalence of the benefit (i.e. what proportion

of voters would benefit from a misaligned vote?). More formally,

E[δi]︸ ︷︷ ︸
Expected

benefit

= E[δi | δi > 0]︸ ︷︷ ︸
Magnitude

×E[1{δi > 0}]︸ ︷︷ ︸
Prevalence

.

Thus the magnitude corresponds to the intensive margin of δi and the prevalence corresponds

to the extensive margin of δi.

The plots in the second and third columns of Figure 5 show magnitude and prevalence

across plurality and IRV for each level of belief precision. The plots indicate that magnitude

and prevalence both play a role in producing the overall differences we observe: voters who

expect to benefit from a misaligned vote do so by less on average in IRV (magnitude) and there

are usually fewer voters who expect to benefit from a misaligned vote in IRV (prevalence). Note,

however, that in IRV the prevalence near the sincere profile is fairly high: around one-fifth of

voters optimally submit a misaligned vote at s = 55 and s = 85 in the first few iterations, which

is higher than the equilibrium prevalence in plurality. (The magnitude in both cases is much

lower in IRV than in plurality.) Thus when beliefs are precise and other voters are expected to

vote insincerely, one is more likely to detect an opportunity to benefit from strategic voting in
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IRV on average, even if the size of that opportunity is small.

Our analysis so far has suggested that IRV is less susceptible to strategic voting on average

across all CSES respondents, but this leaves open the possibility that IRV might be more

susceptible to strategic voting for some preference profiles.

In Figure A.5 we compare susceptibility to strategic voting in the two voting systems for

each CSES survey at iteration 1 (top row) and iteration 60 (bottom row). At iteration 1, the

expected benefit of strategic voting is lower in IRV for a large majority of cases, and the same is

true for magnitude. For prevalence the picture is more mixed: in most cases no more than 1/5

of voters optimally cast a misaligned vote in either system, but there is a substantial minority

of cases where many more voters would optimally cast a misaligned vote in IRV. (These are

cases where many voters who favor a leading candidate optimally rank that candidate second

in IRV.) At iteration 60, however, there are essentially no CSES cases where any measure of

susceptibility to strategic voting is higher in IRV than in plurality. Figures A.6 and A.7 in the

Appendix show a similar story for s = 10 and s = 55, respectively, except that the proportion of

cases where IRV is more susceptible to strategic voting than plurality by any measure is lower at

the first iteration when beliefs are less precise. Thus the conclusion from disaggregated analysis

mirrors that from the aggregated analysis: more voters may benefit from strategic voting in

IRV when beliefs are precise and others are expected to vote sincerely, but by other measures

and in other circumstances IRV is less susceptible to strategic voting than plurality.

4.3 Feedback mechanisms and strategic voting in plurality and IRV

The results in Figure 5 suggest that strategic voting incentives in plurality and IRV depend

differently on expectations about others’ strategic behavior: strategic voting incentives are

highest in IRV when voters expect others to vote sincerely but they are highest in plurality

when voters expect others to vote strategically. Why is this the case, and what does it suggest

about the likely prevalence of strategic voting in these systems?

The bandwagon logic of strategic voting in plurality is well-understood (e.g. Cox, 1997).

If a given candidate is trailing in a poll, then this candidate will trail by even more when

other voters respond to the poll; thus if my best naive response to the poll is to abandon a
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Figure 6: Expected benefit, magnitude, and prevalence of strategic voting in plurality (vertical axis)
vs. IRV (horizontal axis), where each dot is one CSES survey (s = 85, λ = 0.05).

candidate in favor of my second choice, the incentive to do so is likely to be even larger when

I take into consideration other voters’ responses to the poll.30 Strategic voting in plurality is

thus characterized by positive feedback: strategic responses to a particular pattern of expected

results (i.e., one candidate trailing the others) tend to exacerbate that pattern of expected

results, inducing more of the same strategic response.31

Strategic voting in IRV, by contrast, has a stronger tendency toward negative feedback. To

see why, consider a simple example involving three candidates (A, B, and C), with A expected

to get the most top ratings; preferences are expected to be mostly single-peaked with B as

the centrist, so that B is ranked second on most ballots ranking A or C first. Some of A’s

supporters may then strategically rank C first, reasoning that C would be an easier second-

round opponent (a “turkey” or “pushover”) than B would: if B were eliminated her support

would be divided between A and C, likely allowing A to maintain her lead, whereas if C were

eliminated most of her support would go to B, possibly pushing B ahead of A. But if some A

30If others’ desertions widen the expected margin between the top candidates, the effect is ambiguous.
31Myatt (2007) emphasizes the role of negative feedback in a model where voters receive private signals about

which candidate is stronger; feedback here refers to the degree to which voters’ respond to their own private
signals. When public signals are added the bandwagon logic once again dominates. Bouton, Castanheira, and
Llorente-Saguer (2017) highlight negative feedback in a case where aggregate uncertainty produces a bimodal
belief distribution.
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supporters strategically rank C first, A’s expected lead over the others narrows, which makes

further such desertions less appealing; also, because these desertions increase the share of ballots

that rank C first and A second, the ballots become less single-peaked and there is less advantage

to A from facing C instead of B in the second round (conditional on a first-round tie between

those two candidates). This example highlights the more general tendency toward negative

feedback in IRV: strategic responses to a particular pattern of expected results (here, single-

peaked preferences with a non-centrist candidate leading) tend to neutralize that pattern of

expected results, discouraging more of the same strategic response.32

This tendency toward negative feedback provides a new perspective on Dummett (1984)’s

comment, cited in the introduction, that a well-informed voter could have nearly as much

incentive to cast a misaligned vote in IRV as in plurality. In light of our analysis, it is true that

a strategic voting enthusiast who assumes she is the only strategic actor may often recognize

chances to cast a misaligned vote in IRV. But our analysis also indicates that these opportunities

likely remain limited to a small proportion of the electorate, because the incentive to strategically

respond to a poll all but disappear when one perceives that others will do so as well.

4.4 Taking into account second-order impacts of the voting method

So far we have studied strategic voting incentives in plurality and IRV for a fixed common

set of preference distributions. The voting system may, however, affect entry decisions, policy

positions, and other choices made by political actors. In this section we carry out additional

analyses to provide a tentative sense of how these second-order impacts may affect our conclu-

sions. Throughout this section we focus on the case where s = 85 and λ = 0.05; other results

appear in Appendix ??.33

To investigate how our conclusions might change if we took into account effects of the voting

system on preferences, Figure A.8 shows susceptibility to strategic voting separately according

to the existing electoral system in the country. Within each subset of countries (those with

32Because positive feedback is also possible in IRV (e.g. if B is expected to finish last in the first round and
some of C’s supporters strategically rank B first to avoid electing A, making it more likely that B and C tie for
second), the tendency toward negative feedback is not an intrinsic property of the voting system; it also depends
on preferences and beliefs.

33In the figures below, we report weighted averages across all cases belonging to the same group.
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plurality/majoritarian elections, PR elections, or ranked systems as in Australia and Ireland)

the overall pattern holds. Moreover, the overall pattern obtains when we compare plurality

given preferences from plurality countries to IRV given preferences from PR or ranked choice

countries, although the difference in expected benefit of strategic voting is smaller.
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Figure 7: Comparison of expected benefit, magnitude and prevalence of strategic voting in plurality
and IRV by cases’ actual electoral system (s = 85, λ = 0.05). The grey line represents the (weighted)
grand average across all cases.

To gain a sense of how entry might affect our conclusions, Figure A.9 presents results for

four parties and compares them with results in the three-party case.34 The same pattern of

results holds when we look at four parties instead of three, but (given that IRV tends to make

entry more appealing) the more informative comparison may be four-party IRV vs. three-party

plurality.

We find that the expected benefit and magnitude measures are much higher in three-party

plurality than four-party IRV, but average prevalence is slightly higher in four-party IRV. Thus

voters in four-party IRV elections who consider strategy can expect to find more chances to

benefit from a misaligned vote than in three-party plurality elections, but the expected benefit

of voting strategically remains much lower.35

Taken together, these results suggest that if we were to fully take into account the effect

34The results are less smooth because we use Monte Carlo simulation to estimate four-party pivot probabilities.
35This finding also holds when we restrict the comparison to 3-party plurality results from CSES countries

that actually use plurality or two-round runoff against 4-party IRV results from CSES countries that use either
ranked voting or PR (Appendix F.1).
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Figure 8: Comparison of expected benefit, magnitude and prevalence of strategic voting in plurality
and IRV by number of simulated parties (s = 85, λ = 0.05).

of the voting rule on candidate entry and positioning, we would draw the same qualitative

conclusions as we do from our baseline analysis that holds these features fixed.

4.5 Strategic voting and election outcomes

So far we have studied voting systems’ susceptibility to strategic voting in terms of the incentives

for voters to act strategically. Using the same tools we can also ask how strategic voting affects

election outcomes and voter welfare. These questions deserve their own extended treatment.

Here we offer some key results.

To analyze the impact of strategic voting on election outcomes, we first use Monte Carlo

simulation to estimate each candidate’s probability of winning at each iteration in each CSES

case;36 we then compare outcomes at the 1st iteration (no strategic voting) and the 60th iteration

(widespread strategic voting).

As discussed above, strategic voting in plurality causes the initially trailing candidate’s

support to collapse; strategic voting in IRV has more complicated effects, with defections away

from trailing candidates being counterbalanced in some cases with shifts toward those candidates

and negative feedback playing an important role. Consistent with this, we find that strategic

voting affects election outcomes more in plurality than in IRV on average. For each case we

36We take 1M draws from the belief distribution for each iteration/case.

28



compute the Euclidean distance between the vector of victory probabilities at the 1st and 60th

iteration; the mean (median) distance in plurality is .105 (.041) compared to .048 (.003) in IRV.

Plurality is therefore also more susceptible to strategic voting in the sense that its outcomes

depend more on whether voters are strategic or not.

Turning to voter welfare, strategic voting seems to make voters on average slightly better

off in plurality and slightly worse off in IRV, though the impacts are small and the conclusion

depends on how we aggregate cases. Table 3 summarizes average expected utility – calculated

by combining candidates’ win probabilities with voters’ ratings of the parties – and the average

victory probability of the Condorcet Winner37 grouped by simulated system (plurality vs. IRV)

and iteration (1st vs. 60th). We find no difference across systems in either measure at the

first iteration; as voters become more strategic, both measures improve in plurality but worsen

in IRV, resulting in a statistically significant difference between systems at the 60th iteration.

Strategic voting helps voters in plurality on average here because the Condorcet Winner/average

utility maximizer is usually among the frontrunners, and strategic voting tends to help that

candidate; the effects of strategic voting on IRV outcomes are more mixed.

5 Conclusion

This paper has introduced a new approach to evaluating voting systems’ susceptibility to strate-

gic voting that addresses important shortcomings in previous work. Previous researchers have

assessed the manipulability of voting systems by checking how often a voter or group of voters

can benefit from a misaligned vote assuming perfect information and sincere voting by other

voters (“ex post manipulability”). We focus instead on measuring strategic voting incentives as

they might be perceived by sophisticated voters or elites in advance of an election (“ex ante ma-

nipulability”), which requires allowing for uncertainty and relaxing the assumption that others

vote sincerely. Although our method can be used to measure susceptibility to strategic voting

in any electoral system, we focus on the contrast between IRV and plurality, as this has been

a salient issue in recent electoral reform proposals in the U.S. and elsewhere. In hypothetical

three- and four-candidate elections based on preference data from 160 election surveys from 56

37We refer here to the Condorcet Winner among survey respondents.
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Table 1: Average Expected Utility and Pr(Condorcet Winner Wins) by Iteration and System

Average Expected Utility

Iteration/System Plurality IRV ∆ System

1 5.429 5.431
0.002
(0.301) [0.764]

60 5.436 5.423
-0.013
(-3.795) [0]

∆ Iteration
0.007
(1.287) [0.2]

-0.008
(-3.347) [0.001]

Pr(Condorcet Winner Wins)

Iteration/System Plurality IRV ∆ System

1 0.825 0.826
0.002
(0.173) [0.863]

60 0.838 0.82
-0.018
(-2.085) [0.039]

∆ Iteration
0.013
(1.267) [0.207]

-0.006
(-1.012) [0.313]

Note: Averages include case weights. Margins report weighted averaged
of between-iteration (bottom row) and between-system (last column) differ-
ences, along with (t-statistic) and [p-value]

30



countries, we show that although opportunities for strategic voting may be more widespread

in IRV when beliefs are precise and other voters vote sincerely, the average benefit of being

strategic is much higher in plurality, especially when beliefs are imprecise and strategic voting

widespread. We suggest that IRV is less susceptible to strategic voting on average partly be-

cause of negative feedback: typically, the more I expect others to respond strategically (and

myopically) to a poll, the less opportunity for me to benefit from a misaligned vote. This con-

trasts with the well-known bandwagon effect in plurality elections, where the more other voters

desert my preferred candidate the more I want to do so.

We anticipate that this paper may strike some theoretically-minded readers as too empirical

(because it relies on preference data from a specific set of electoral surveys rather than studying

voting system properties in a more abstract way) and some empirically-minded readers as too

theoretical (because it studies hypothetical elections rather than real ones). To the charge

of being too empirical, we respond that (as manipulability research going back to at least

Chamberlin (1985) has recognized) one cannot characterize a voting method’s susceptibility to

strategic voting without specifying preferences; we have used party ratings from electoral surveys

to approximate typical preference arrangements, but others are free to apply our methods using

other assumptions about preferences. To the charge of being too theoretical, we emphasize that

our work is complementary to more empirical approaches, and generates predictions that could

be tested empirically; one distinctive strength of our approach, though, is that we can use it

to compare voting rules that are used in disparate situations and/or are uncommon (or even

hypothetical), though of course this requires assumptions.

As noted in the introduction, we assume voters are uncertain about election outcomes but

otherwise perfectly understand the strategic voting problem; this allows us to identify oppor-

tunities for strategic voting, but we emphasize that these opportunities may or may not be

seized by voters or elites. We note two further important caveats to our conclusions. First,

susceptibility to strategic voting is only one of many criteria to consider in choosing a voting

system; if we ignored other considerations we might choose a dictatorship. Second, we do not

fully model the impact of the voting system on candidate entry and positioning (although we

do attempt to show how these factors might affect our conclusions), which may leave us with

31



an incomplete view of the systems’ effects on strategic voting incentives as they are experienced

by voters.

Bringing these two points together, our measure of susceptibility to strategic voting should

be considered along with measures of how the voting system affects candidate entry, candidate

positioning, turnout, and other outcomes. In that sense, we intend for our work to speak to a

growing literature on other aspects of electoral systems (Iversen and Soskice, 2006; Carey and

Hix, 2011; Cox, Fiva, and Smith, 2016; Cox, 1999; Sanz, 2017; Skorge, 2021; Catalinac, 2018;

Shugart and Taagepera, 2018), and thus contribute to a richer understanding of all the different

dimensions along which policymakers may evaluate electoral reform(s).
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A Measuring the expected utility of strategic voting

Preferences
about candidates

U
Sec. 2.3.1

Expected utility
from casting ballot
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Beliefs about election
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Sec. A.1.1, A.1.2

Figure A.1: Steps in calculating voters’ expected utility from their preferences and beliefs.
The entire process in the figure represents one iteration of our iterative polling algorithm; for the next
iteration, beliefs are adjusted accordingly. The cross-references in each box point the reader towards
more detail on each step.

In this section, we offer a more technical description of our new method of measuring voters’
expected utility from voting strategically. Figure A.1 summarizes the main steps in the process
of computing the expected utility of each ballot from preferences and beliefs; each block in the
flowchart contains references to sections containing relevant detail for that step.

In what follows, we review the steps in this process roughly in reverse: we show how to
compute the expected utility of each ballot in each voting system (assuming known preferences
and pivot probabilities); we next show how to compute pivot probabilities given beliefs about
likely election outcomes; finally, we describe how we model beliefs about likely election outcomes
using in iterative polling algorithm.

A.1 Calculating the expected utility from each possible ballot

Suppose n voters participate in an election to choose a winner from a set of candidates denoted
C. We assume that these voters have Von Neumann-Morgenstern utility functions defined over
the candidates, with ui,c denoting the utility of voter i from the election of candidate c ∈ C. We
can organize these utilities into a utility matrix U with one row per voter and one column per
candidate; for example, given candidates {A,B,C}, U is

U =


u1A u1B u1C

u2A u2B u2C
...

...
...

unA unB unC

 .
We also assume that each voter is uncertain about how other voters will vote but all voters

share a common belief about the probability of each possible election result, including the
election results in which a single ballot could be decisive in various ways, i.e. pivot events. Let
B be the set of all permissible ballots (i.e. distinct votes that can be cast) in the voting system.
Let pc,b be the probability that candidate c is elected given one additional ballot b ∈ B is
submitted, and organize these probabilities into an election probability matrix P with one row
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per candidate and one column per ballot (so its dimensions are |C| × |B|). Then the expected
utility of each voter from submitting each possible ballot is the expected utility matrix U = UP
with n rows (one row per voter) and one column per ballot. From the expected utility matrix we
can compute the optimal (strategic) ballot for each of our n voters as well as the difference in each
voter’s expected utility between casting the optimal ballot and casting a sincere ballot, which is
a measure of the voter’s strategic voting incentive. Studying strategic voting incentives in any
voting system given voters’ preferences and beliefs is thus essentially a problem of assembling
the election probability matrix P. We now show how to do this in three-candidate plurality
and IRV elections given the probability of pivot events (i.e. pivot probabilities); later we show
how to compute these pivot probabilities given beliefs.

A.1.1 The P matrix in plurality

In plurality, voters submit ballots naming one candidate, so the set of admissible ballots is the
set of candidates. Given candidates {A,B,C}, the P matrix is

P =

pA,A pA,B pA,C

pB,A pB,B pB,C

pC,A pC,B pC,C

 ,
where e.g. pB,A indicates the probability B is elected when one votes for A. Let an election
result be written as a vector v = (vA, vB, vC), with e.g. vA indicating the share of ballots naming
candidate A. For each voter, this is implicitly the result among other voters (vi in the main
text), though we omit the subscript to lighten notation. We assume throughout that voters
consider v to be a continuous random variable, with a common belief summarized by pdf f(v);
letting v be continuous simplifies the analysis by eliminating the possibility of ties. Given a
total electorate of size N ,38 the probability that a single ballot could change the plurality winner
from candidate j to candidate i is then

πij = Pr
(
vj − vi ∈

(
0, N−1

)
∩ vi > vk

)
. (2)

Assuming each candidate is equally likely to finish just ahead of or just behind another candidate
(so that πij = πji), the diagonal elements of P in plurality are

pi,i = πi + 2(πij + πik), (3)

where i, j, and k are distinct candidates. That is, i wins (given an additional vote for i) if i
would win in any case (which occurs with probability πi), if i would finish either slightly behind
or slightly ahead of j (2πij), or if i would finish either slightly behind or slightly ahead of k
(2πik). The off-diagonal elements are

pj,i = πj + πjk (4)

where again i, j, and k are distinct candidates. That is, j wins (given an additional vote for i)
if j would win in any case (πj) or if j is slightly ahead of k (πjk).

It will be convenient to work with a normalized version of P in which we set πi to 0 for
i ∈ {A,B,C}, thus ignoring results in which a single ballot could not determine the outcome.
In that case UP produces a normalized (i.e. recentered) measure of expected utility that is
sufficient for determining both the optimal ballot and the benefit of strategic voting.39

38Thus the n voters may be a sample of the larger electorate.
39Similarly, Myerson and Weber (1993) focus on the gain in expected utility relative to abstention.
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Table 1: Pivot events in IRV

Label Type Description Probability

ij.2 Second-
round

i and j tie after k is
eliminated in 1st

round
πij.2 = Pr

(
vj + vkj − 1

2
∈
(
0, N−1

)
∩ vk < vi ∩ vk < vj

)

ij.ik
First-
round

i and j tie for 2nd in
1st round; only i
would defeat k

πij.ik = Pr
(
vj − vi ∈

(
0, N−1

)
∩ vj < vk ∩ vk + vik >

1
2
∩ vk + vjk <

1
2

)

ij.kj
First-
round

i and j tie for 2nd in
1st round; only j
would defeat k

πij.kj = Pr
(
vj − vi ∈

(
0, N−1

)
∩ vj < vk ∩ vk + vik <

1
2
∩ vk + vjk >

1
2

)

ij.ij
First-
round

i and j tie for 2nd in
1st round; both i

and j would defeat k
πij.ij = Pr

(
vj − vi ∈

(
0, N−1

)
∩ vj < vk ∩ vk + vik <

1
2
∩ vk + vjk <

1
2

)
Notes: In this table a “tie” indicates that one candidate finishes slightly ahead of the other, such that a single
ballot could reverse the order of finish.

A.1.2 The P matrix in IRV

In an IRV election involving three candidates {A,B,C}, voters submit ballots ranking the
candidates, so the admissible ballots are {AB,AC,BA,BC,CA,CB} (where ij denotes a ballot
that ranks candidate i first, j second, and (implicitly) k third). The P matrix then looks like

P =

pA,AB pA,AC pA,BA pA,BC pA,CA pA,CB

pB,AB pB,AC pB,BA pB,BC pB,CA pB,CB

pC,AB pC,AC pC,BA pC,BC pC,CA pC,CB


and an election result can be written as v = (vAB, vAC , vBA, vBC , vCA, vCB).

A three-candidate IRV election can be considered to take place in two rounds: in the first
round the candidate who receives the fewest first-place votes is eliminated; in the second round
the winner is determined based on the ranking of the remaining two candidates on all ballots.40

There are two classes of pivot events in IRV. In second-round pivot events, a single ballot
determines who wins the second round. Let ij.2 denote the event that a single ballot ranking i
above j could change the IRV winner from j to i in the second round, which (again assuming v
is continuous) occurs when j is preferred to i on only slightly more than half of all ballots and k
receives fewer top rankings than either i or j. The probability of this pivot event (πij.2) appears
in the first row of Table 1. In first-round pivot events a single ballot determines the winner
by determining who advances to the second round. If candidates i and j are essentially tied
for second (in top rankings) in the first round, such that a single ballot determines which one
advances, then there are three scenarios in which a single ballot could determine the winner:
when either candidate (i or j) would defeat k in the second round (event ij.ij), when only i
would defeat k in the second round (event ij.ik), and when only j would defeat k in the second
round (event ij.kj). These events are described in Table 1, with the associated probability
appearing in the final column.

To fill in the P matrix for IRV using pivot probabilities, we assume again that adjacent
pivot events are equally likely: πij.2 = πji.2 (i.e. each candidate is just as likely to trail as to
lead another candidate in the second round) and πij.ik = πji.ki, πij.kj = πji.kj , and πij.ij = πji.ji
(i.e. each candidate is just as likely to trail as to lead another candidate for second in the first

40Descriptions of three-candidate IRV often note that the election ends in the first round if one candidate wins
a majority of top rankings, but such a candidate would obviously win the second round so this step is superfluous.
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round, for each possible way that the first round outcome could determine the winner). Then
we have

pi,ij = pi,ik = πi + 2(πij.2 + πik.2 + πij.ij + πij.ik + πik.ik + πik.ij) + πjk.ik + πjk.ji,

meaning that i wins (given an additional ballot ranking i first) if i would win in any case (which
occurs with probability πi); if i would finish nearly tied with (i.e. just ahead of or just behind)
j or k in the second round (2(πij.2 + πik.2)); if i would finish nearly tied with j or k for second
in the first round and would win if it advanced (2(πij.ij + πij.ik + πik.ik + πik.ij)); or if j and k
would nearly tie for second in the first round, only one of them would lose to i in the second
round, and that candidate is the one who advances (πjk.ik + πjk.ji). Similarly, we have

pi,jk = πi + 2πjk.ik + πik.ik + πik.ij

pi,ji = πi + 2(πik.2 + πjk.ik) + πik.ik + πik.ij .

The first expression states that i wins (given an additional ballot ranking j first and k second)
if i would win in any case (which occurs with probability πi); if j and k would nearly tie for
second in the first round and only k would defeat i (2πjk.ik), so that a ballot of ji ensures i’s
victory; or if i would finish the first round narrowly ahead of k for second place and would
defeat j in the second round (πik.ik + πik.ij). The second expression states that i wins (given
an additional ballot ranking j first and i second) in all the same situations plus when i would
finish nearly tied with k in the second round (2πik.2). As explained above, in practice we set
πi to zero for {A,B,C}, which focuses on pivot events and produces a normalized measure of
expected utility.
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A.2 Computing pivot probabilities

Next, we show how to compute pivot probabilities in three-candidate plurality and IRV elections
in order to be able to compute the election probability matrix P.

In both systems, we assume that the distribution over election outcomes f(v−i) follows a
Dirichlet distribution, which implies modeling the distribution of votes as a continuous random
variable. One benefit of this assumption is that the probability of an exact tie between two
candidates is zero, so we can avoid tedious complications about tie-breaking and making vs.
breaking ties. The Dirichlet distribution’s properties make it particularly convenient to work
with, as we will see when we compute pivot probability for IRV elections.

A.2.1 Pivot Probabilities in Plurality

A single vote can move candidate j ahead of candidate i when vi − vj ∈ (0, 1
N ), where N is the

total size of the electorate. Without loss of generality, the probability that a single vote can
elect candidate 2 instead of 1 in a three-candidate race is

π12 = Pr

(
v1 − v2 ∈

(
0,

1

N

)
∩ v1 > v3

)
which given f(v−i) and an electorate of size N can be written as

π12 =

∫ 1
2

1
3

∫ v1

v1− 1
N

f(v1, v2, 1− v1 − v2) dv2 dv1.

If f(v−i) is smooth and the electorate N is large, then

π12 ≈
1

N

∫ 1
2

1
3

f(y, y, 1− 2y) dy. (5)

(Note that the same approximation would hold for the probability that a single vote can elect
candidate 1 instead of 2, so we can collapse these events into a single pivot event π12.) This
approximation can be computed by numerical integration methods.41

A.2.2 Pivot Probabilities in IRV

To compute the probability of pivot events in IRV given Dirichlet beliefs, we make use of three
well-known (Frigyik, Kapila, and Gupta, 2010) properties of the Dirichlet distribution:

Aggregation property : (v1, v2, . . . , vi + vj , . . . vB) ∼ Dir
(
α1, α2, . . . , αi + αj , . . . αB

)
. (If two of

the vote shares are added together to create a new, shorter vector of vote shares, the new vector
of vote shares also follows a Dirichlet distribution, where the parameters corresponding to the
summed-up vote shares are also summed up.)

Marginal distribution: vi ∼ Beta(αi,
∑
−i α). (Unconditionally, any particular vote share follows

a Beta distribution. This follows from the aggregation property and the observation that a
Dirichlet distribution with two parameters is a Beta distribution.)

Conditional distribution: (v1, . . . , vi−1, vi+1, . . . , vB | vi) ∼ (1−vi)Dir(α1, . . . , αi−1, αi+1, . . . , αB).
(Conditional on i receiving share vi, the remaining shares follow a rescaled Dirichlet distribution
in which αi is removed from the parameter vector.)

41Fisher and Myatt (2017) provide an analytical expression for relative pivot probabilities in three-candidate
plurality contests given Dirichlet beliefs. Eggers and Vivyan (2020) validate a numerical approximation when
there are more than three candidates.
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We will use f(v; sv) to indicate the Dirichlet density with parameters sv evaluated at v.
Because the Beta density can be seen as a special case of the Dirichlet density, we will use f(·)
for both. As in the main text, vab denotes the share of ballots ranking a first, b second, and
(implicitly) c third; with vac, vba etc similar; va denotes the share of ballots listing a first, i.e.
va ≡ vab + vac.

Probability of second-round pivot events: The probability of a trailing b by less than 1
N

in the second round can be written

Pr

(
vc < va <

1

2
∩ vc < vb <

1

2
∩ va + vca −

1

2
∈
(
− 1

N
, 0

))
.

This can be factorized as

Pr

(
va + vca −

1

2
∈
(
− 1

N
, 0

))
× Pr

(
vc < va ∩ vc < vb

∣∣∣∣ va + vca −
1

2
∈
(
− 1

N
, 0

))
. (6)

Using the aggregation property, the first term in expression 6 is∫ 0

− 1
N

∫ 1
2

0
f

(
y − x/4, 1

2
− y − x/4, 1

2
+ x/2; sva, svca, s(vb + vcb)

)
dy dx

which is approximately

√
6

4

1

N

∫ 1
2

0
f

(
y,

1

2
− y, 1

2
; sva, svca, s(vb + vcb)

)
dy.

(The approximation is exact if the density is flat in the immediate neighborhood of second-round

ties between a and b.) To understand the leading
√

6
4 term: On the 3-dimensional unit simplex

with vertices va, vca, and 1− va − vca, draw a line where va + vca = 1
2 ; this locus characterizes

pairwise ties between a and b and goes through the point (1
4 ,

1
4 ,

1
2). Now draw a line parallel to

the first but shifted slightly so that it runs through the point (1
4 −

1
4N ,

1
4 −

1
4N ,

1
2 −

1
2N ). Between

the two lines is the narrow strip where b wins a pairwise contest between the two candidates but a

single ballot could move a ahead of b. The width of this strip is

√(
1

4N

)2
+
(

1
4N

)2
+
(

1
2N

)2
=
√

6
4N .

We now turn to the second term in expression 6. Given that va = y, vca = 1
2 − y, and

vb + vcb = 1
2 , we note that vc < va implies vcb < 2y − 1

2 and vc < vb implies vcb <
y
2 ; comparing

the two conditions, note that the former binds when y < 1
3 and the latter binds otherwise. Next,

using all three properties of the Dirichlet noted above and given that va + vca = 1
2 ,

(vcb | va + vca) ∼ 1

2
Beta (svcb, svb) , (7)

i.e. given that half the ballots list a first or list c first and a second, the proportion listing c
first and b second (instead of b first) lies between 0 and 1/2; if we multiply the proportion by
two, the result is distributed according to a Beta distribution with parameters svcb and svb.
Thus to find the probability that vcb < 2y − 1

2 (the binding constraint in the second term
from expression 6 when y < 1/3), we integrate this distribution from 0 to 2y − 1

2 ; to find the
probability that vcb <

y
2 (the binding constraint in the second term from expression 6 when

y > 1/3), we integrate this distribution from 0 to y
2 . Finally note that y (i.e. va) cannot be

below 1/4; otherwise either a finishes last in first-preference votes or b receives more than half
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of first-preference votes. Combining all of this, we have

Nπab ≈
√

6

4

∫ 1
3

1
4

f

(
y,

1

2
− y, 1

2
; sva, svca, s(vb + vcb)

)∫ 2y− 1
2

0
f (2z, 1− 2z; svcb, svb) dz dy +

∫ 1
2

1
3

f

(
y,

1

2
− y, 1

2
; sva, svca, s(vb + vcb)

)∫ y
2

0
f (2z, 1− 2z; svcb, svb) dz dy. (8)

Note that the second and fourth densities are evaluated at (vcb = 2z, vb = 1 − 2z) rather than
(vcb = z, vb = 1

2 − z) because of the 1
2 in expression 7.

The analysis extends straightforwardly to the two other second-round pivot events by ex-
changing candidate labels.

Probability of first-round pivot events: First-round pivot event ab.ab takes place when a
ties b for second place in first-preference votes and either candidate would win the election if
the other were eliminated. Generally, the probability of ab.ab is

Pr

(
vb−va ∈

(
− 1

2N
,

1

2N

)
∩vb < vc∩va < vc <

1

2
∩va+vba > vc+vbc∩vb+vab > vc+vac

)
, (9)

which can be factorized as

Pr

(
vb − va ∈

(
− 1

2n
,

1

2n

)
∩ vb < vc ∩ va < vc <

1

2

)
×

Pr

(
va + vba > vc + vbc ∩ vb + vab > vc + vac

∣∣∣∣ vb − va ∈ (− 1

2N
,

1

2N

)
∩ vb < vc ∩ va < vc <

1

2

)
.

Using the same approximation as above, the first line is approximately

1√
2

1

N

∫ 1
3

1
4

f

(
z, z, 1− 2z; sva, svb, svc

)
dz.

Letting va = vb = z ∈
(

1
4 ,

1
3

)
, the second term becomes

Pr
(
vbc < 2z − 1

2
∩ vac < 2z − 1

2

∣∣∣∣ va = vb = z
)
. (10)

and again combining all three properties we have

(vbc|va + vc) ∼ zBeta
(
svbc, svba

)
(vac|vb + vc) ∼ zBeta

(
svac, svab

)
.

Putting together the above, we have

Nπab.ab ≈
1√
2

∫ 1
3

1
4

f

(
z, z, 1− 2z; sva, svb, svc

)
×

∫ 2z− 1
2

0
f

(
x

z
,
z − x
z

; svbc, svba

)
dx×

∫ 2z− 1
2

0
f

(
x

z
,
z − x
z

; svac, svab

)
dx dz.(11)

To get the probability of pivotal event ab.ac we reverse the last inequality in expression 9 (chang-
ing vb+vab > vc+vac to vb+vab < vc+vac), which means changing the last term in expression 11
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from
∫ 2z− 1

2
0 f

(
x
z ,

z−x
z ; svac, svab

)
dx to 1−

∫ 2z− 1
2

0 f
(
x
z ,

z−x
z ; svac, svab

)
dx. The analysis extends

straightforwardly to all other first-round pivot events by similarly reversing inequalities and/or
exchanging candidate labels.

Checking consistency of numerical and simulation-based estimates: To check the va-
lidity of the numerical approach and compare the computational burden of the two approaches,
we computed pivotal probabilities for 100 scenarios using the two approaches while varying
the number of simulation draws. If our numerical approach is correct, the simulation results
should converge on our numerical solutions as the number of simulations (and the computational
burden of the simulation approach) increases. Below we show that this is the case.

We begin by drawing J sets of Dirichlet parameter values at which we will calculate pivotal
probabilities. Specifically, for scenario j we (1) draw a vector vj = (vAB,j , vAC,j , vBA,j , vBC,j , vCA,j , vCB,j)
from a Dirichlet distribution with parameters (6, 4, 5, 5, 4, 6) and (2) draw sj independently from
a uniform distribution between 15 and 60. Together, vj and sj define beliefs for scenario j. For
each of these J scenarios there are 12 pivotal probabilities to compute. Let T denote the J×12
matrix of pivotal probabilities computed with our numerical approach, and let T̃M denote the
J × 12 matrix of pivotal probabilities computed with our simulation method using M draws
from the belief distribution. Our focus is on how the discrepancies between T and TM vary
with M . We summarize these discrepancies with two approaches.

First, for each M and for each of J = 100 we compute the root mean squared error (RMSE),
or average discrepancy, between T and T̃M . That is, for a given M , we compute the RMSE for
each row of T and T̃M . The left panel of Figure A.2 summarizes the distribution of these 100
RMSEs at each value of M . It shows that the distribution of RMSEs converges toward a point
mass at zero as the number of draws from the belief distribution increases. As the simulation
approach becomes more accurate, its computational burden also increases (as shown in the right
panel): with M of 1 million, our machine takes over 250 times longer to compute the pivotal
probabilities by simulation than by the analytical approach.42

Second, for each pivotal event we compute at each M the RMSE across the J = 100 scenarios
between T and T̃M . That is, for a given M , we compute the RMSE for each column of T and
T̃M . Figure A.3 summarizes how these RMSEs vary with M . It shows that the RMSE drops
toward zero for all pivotal events as the number of number of draws from the belief distribution
increases.

42Benchmarking performed on a 2017 MacBook Pro with 2.3 GHz processor and 16GB memory.
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Figure A.2: Numerical/analytical approach agrees with simulations but is many times faster
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Note: For each of 100 sets of belief parameters, we compute pivotal probabilities (1) analytically and (2) by
simulation, with M draws from the belief distribution. We then calculate the RMSE across the 12 pivotal events
between the analytical approach and the simulation approach for each of the 100 scenarios. The left figure shows,
for each value of M (horizontal axis), that the distribution of the RMSEs across the 100 scenarios converges
to a point mass at zero as the number of simulation draws increases. The right panel shows how the relative
computational burden of the simulation approach increases as the number of simulation draws increases
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Figure A.3: RMSE by pivotal event and number of draws in simulation
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discrepancy (RMSE) between the two approaches as M increases.
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A.3 Modeling beliefs about likely election outcomes

Finally, we provide greater detail about modeling beliefs about likely election outcomes. As
stated in the main text, we rely on a Dirichlet distribution to describe voters’ beliefs about the
distribution of likely ballot shares. More formally, the distribution f(v−i) is defined as

f(v−i) = Dir(v̄ × s) (12)

where v̄ is the location parameter – describing the expected value of the distribution – and s is
the scale parameter, scaling the uncertainty around that expectation. The choice of v̄ depends
on our iterative polling algorithm. For the first iteration, we set the location parameter to
correspond to the distribution of vote shares if everyone in the surveyed election had cast their
ballot sincerely.

In each subsequent iteration m, the expected result at which the belief is centered is a
weighted average of the previous expected result, v̄m−1, and voters’ best response (v̄BR) to
beliefs centered at v̄m−1:

vm = λvBR(v̄m−1, s) + (1− λ)v̄m−1. (13)

We run this algorithm for 250 iterations for each case. As the main text suggests, iterations
at the beginning of the algorithm can be interpreted as assuming that most voters vote sincerely;
while later iterations can be interpreted as assuming a highly strategic electorate.
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B Selecting the optimal vote from expected utilities

In order to identify a voter’s strategically optimal vote, we have to find the ballot choice that
yields the highest expected utility. In technical terms, this is the row maximum of the matrix
product of the utility matrix U and the pivotal probability matrix P (cf. Section 2 in the main
paper). However, as some pivotal probabilities are of an extremely small magnitude (especially
in IRV), we conventionally run into the ‘floating point problem’ when using computational
approaches to identify the maximum (Goldberg, 1991). Essentially, finite memory means that
computers can only store numbers with limited precision by approximating them to the closest
defined floating point. As a consequence, tiny differences between numbers that lie in between
two floating points are lost due to rounding. This problem affects the selection of row minima
and maxima if the values are sufficiently small, and the difference between the two ballots under
IRV with the same first preference depends on some very unlikely event. For example, for a
voter with sincere preference ABC, voting ABC or ACB amounts to the same expected utility
except for the case where A is eliminated in the first round and the voter is pivotal between B
and C in the second round. If that event is sufficiently unlikely, the two expected utilities may
appear to be the same and either could be chosen as the maximum, even though ABC must
be strictly better for the voter (assuming the B−C second-round tie has non-zero probability)
and would be chosen if we had unlimited precision.

Ideally, we would increase the memory for each stored number, but this comes at a high
computational cost. As a more feasible solution, we implement the following procedure to avoid
selecting row maxima that are theoretically unjustified and only occur because of the floating
point precision problem:

1. We order voters’ preferences over ballots from most sincere to least sincere, assigning a
higher weight w to more sincere ballots; for a CBA voter, for example the weights are
CBA = 6, CAB = 5, BCA = 4, BAC = 3, ACB = 2, ABC = 1

2. We then add a small weight to voters’ expected utility for each ballot, which is the above
weight w multiplied by 1 × 10−10, so e.g. we add 6 × 10−15 to the expected utility of a
CBA ballot for a CBA-type voter.

This adjustment addresses the floating point problem. In some cases it may also override
a very small but legitimate expected utility difference in favor of a sincere vote. Although we
would prefer to address the floating point problem without introducing extra assumptions about
voter behavior, nudging voters who are essentially indifferent between two ballots toward a more
sincere vote arguably better captures what voters might do in practice. In our IRV simulations it
appears that reducing the magnitude of the sincerity nudge allows for more oscillating patterns
at a given λ but does not affect any of the main conclusions of the paper.
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C Comparison of preference distributions

To get an idea of how much our conclusions might differ if we endogenized preferences, we can
compare preference distributions in plurality elections to those in PR elections; these are the two
most common systems and ones for which readers may expect differences. (For example, parties
in PR systems are thought to more clearly differentiate themselves from each other (Norris et al.,
2004), so we might expect a bigger spread in party ratings and more multidimensionality.) We
consider four metrics: the average top rating (i.e. the highest rating assigned to any party,
averaged over respondents); the average bottom rating; the average difference between top
rating and bottom rating; and a measure of unidimensionality.43 Figure A.4 shows the densities
for each system and each metric. Although some differences are apparent (e.g. there are more
cases with high average top ratings in PR than in plurality), Kolmogorov-Smirnov tests show no
significant differences in these distributions across systems;44 in a regression of each measure on
dummies for PR and IRV (so plurality is the omitted group), all electoral system coefficients are
insignificant for all measures (see table below). This indicates that preference distributions are
not too dissimilar across electoral systems, and further suggests that a more elaborate procedure
that endogenizes preferences might produce similar results to ours.
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Figure A.4: Distribution of preference profiles across plurality and PR systems in CSES

To further address the effect of electoral systems on preference distributions, we extend
our baseline analysis in Appendix F by including four parties and conditioning on the existing
electoral system, which lets us speculate about how second-order effects of the electoral system
might influence our conclusions. This allows us, for example, to compare IRV using preferences
over the top four parties found in PR countries to plurality using preferences over the top three
parties found in majoritarian countries. Reassuringly, we find that the results of these analyses
remain consistent with the conclusions of our baseline findings, again suggesting that taking
into account the effect of the electoral system on preferences would not affect our key takeaways.

43Let xijk denote the proportion of voters whose preferences are single-peaked if we order the parties ijk. Our
measure is the maximum such value across all orderings.

44KS test p-values are: top .950, bottom .597, difference .391, unidimensionality .721.
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Table 2: Statistics describing distribution of preferences.

Top Bottom Difference Unidimensionality

Plurality baseline 7.298 2.124 5.174 0.784
(0.184) (0.244) (0.298) (0.020)

PR −0.047 0.149 −0.196 0.016
(0.194) (0.257) (0.314) (0.021)

RCV 0.630 0.095 0.535 −0.014
(0.344) (0.457) (0.558) (0.037)

Each unit of observation is a CSES case. ’Top’ describes the average util-
ity of the top-ranked candidate; ’Bottom’ describes the average utility of
the lowest-ranked candidate. ’Difference’ measures the average difference in
utility between the highest- and lowest-ranked candidate. Polarization mea-
sures the smallest share of voters who put a candidate last
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D Strategic voting in IRV and conventional runoffs

We may shed additional light on strategic voting in IRV by comparing it to strategic voting
in a conventional runoff election, which has been more extensively studied (e.g. Bouton, 2013;
Ornstein and Norman, 2014; Bouton and Gratton, 2015). The two systems are similar in many
respects related to strategic voting, including the possibility of helping one candidate win by
ranking another candidate higher. There are two main differences. First, in conventional runoff
elections a voter could vote for candidate B in the first round and then, after A and B qualify
for the second round, switch to A; this might be attractive if, by voting for B, the voter could
prevent C (a more dangerous opponent for A) from advancing. In IRV, by contrast, the same
voter can help B advance by submitting a BAC ballot, but this effectively commits the voter to
supporting B over A in the second round as well (where the tactic might backfire). 45 Second,
in conventional runoff elections voters have an incentive to help a leading candidate secure a
majority in the first round; this leads to Duvergerian equilibria in Bouton (2013), with only
two candidates winning first-round votes. In an IRV election, where it is not possible to lose
support from one round to the next, this incentive is irrelevant. If candidate A is one vote short
of a first-round majority, then an additional first-place vote could affect the outcome only if
supporters of the third-place candidate never rank A second; but then A is also one vote short
of a second-round majority, so the circumstance is subsumed in a second-round pivot event.

45This means that voters in the first round of a conventional runoff do not need to consider second-round pivot
events, which tend to constrain misaligned voting in IRV.
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E Comparison of plurality and IRV on a case-by-case basis

In Figure A.5 we compare susceptibility to strategic voting in the two voting systems for each
CSES survey at iteration 1 (top row) and iteration 60 (bottom row). At iteration 1, the expected
benefit of strategic voting is lower in IRV for a large majority of cases, and the same is true
for magnitude. For prevalence the picture is more mixed: in most cases no more than 1/5 of
voters optimally cast a misaligned vote in either system, but there is a substantial minority
of cases where many more voters would optimally cast a misaligned vote in IRV. (These are
cases where many voters who favor a leading candidate optimally rank that candidate second
in IRV.) At iteration 60, however, there are essentially no CSES cases where any measure of
susceptibility to strategic voting is higher in IRV than in plurality. The figures below show a
similar story for s = 10 and s = 55, respectively, except that the proportion of cases where
IRV is more susceptible to strategic voting than plurality by any measure is lower at the first
iteration when beliefs are less precise. Thus the conclusion from disaggregated analysis mirrors
that from the aggregated analysis: more voters may benefit from strategic voting in IRV when
beliefs are precise and others are expected to vote sincerely, but by other measures and in other
circumstances IRV is less susceptible to strategic voting than plurality.
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Figure A.5: Expected benefit, magnitude, and prevalence of strategic voting in plurality (vertical axis)
vs. IRV (horizontal axis), where each dot is one CSES survey (s = 85, λ = 0.05).
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Figure A.6: Expected benefit, magnitude, and prevalence of strategic voting in plurality (vertical
axis) vs. IRV (horizontal axis) with low (s = 10) belief precision and medium strategic responsiveness
(λ = 0.05), where each dot is one CSES survey.
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Figure A.7: Expected benefit, magnitude, and prevalence of strategic voting in plurality (vertical axis)
vs. IRV (horizontal axis) with medium (s = 55) belief precision and medium strategic responsiveness
(λ = 0.05), where each dot is one CSES survey.
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F Taking into account second-order impacts of the voting method

So far we have studied strategic voting incentives in plurality and IRV for a fixed common
set of preference distributions. The voting system may, however, affect entry decisions, policy
positions, and other choices made by political actors. In this section we carry out additional
analyses to provide a tentative sense of how these second-order impacts may affect our conclu-
sions. Throughout this section we focus on the case where s = 85 and λ = 0.05 in the text;
other results appear below (Figures A.10 and A.11).46

To investigate how our conclusions might change if we took into account effects of the voting
system on preferences, Figure A.8 shows susceptibility to strategic voting separately according
to the existing electoral system in the country. Within each subset of countries (those with
plurality/majoritarian elections, PR elections, or ranked systems as in Australia and Ireland)
the overall pattern holds. Moreover, the overall pattern obtains when we compare plurality
given preferences from plurality countries to IRV given preferences from PR or ranked choice
countries, although the difference in expected benefit of strategic voting is smaller.
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Figure A.8: Comparison of expected benefit, magnitude and prevalence of strategic voting in plurality
and IRV by cases’ actual electoral system (s = 85, λ = 0.05). The thin dotted line represents the
(weighted) grand average across all cases.

To gain a sense of how entry might affect our conclusions, Figure A.9 presents results for
four parties and compares them with results in the three-party case.47 The same pattern of
results holds when we look at four parties instead of three, but (given that IRV tends to make
entry more appealing) the more informative comparison may be four-party IRV vs. three-party
plurality.

We find that the expected benefit and magnitude measures are much higher in three-party
plurality than four-party IRV, but average prevalence is slightly higher in four-party IRV. Thus
voters in four-party IRV elections who consider strategy can expect to find more chances to
benefit from a misaligned vote than in three-party plurality elections, but the expected benefit
of voting strategically remains much lower.48

46In the figures below, we report weighted averages across all cases belonging to the same group.
47The results are less smooth because we use Monte Carlo simulation to estimate four-party pivot probabilities.
48This finding also holds when we restrict the comparison to 3-party plurality results from CSES countries

that actually use plurality or two-round runoff against 4-party IRV results from CSES countries that use either
ranked voting or PR (Subsection F.1).
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Figure A.9: Comparison of expected benefit, magnitude and prevalence of strategic voting in plurality
and IRV by number of simulated parties (s = 85, λ = 0.05).

Taken together, these results suggest that if we were to fully take into account the effect
of the voting rule on candidate entry and positioning, we would draw the same qualitative
conclusions as we do from our baseline analysis that holds these features fixed.
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Figure A.10: Expected benefit, magnitude, and prevalence of strategic voting with medium (s = 55,
right) belief precision, and medium strategic responsiveness (λ = 0.05). Grouped by electoral system
used in cases.
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Figure A.11: Expected benefit, magnitude, and prevalence of strategic voting with medium (s = 10,
right) belief precision, and medium strategic responsiveness (λ = 0.05). Grouped by electoral system
used in cases.
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F.1 Robustness of 4-Party Results to Subgroup

In this section we focus on a comparison of 3-party, plurality results from CSES cases that use
plurality or two-round majority runoff voting with 4-party, IRV results from CSES cases that
use either ranked voting or PR.
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Figure A.12: Expected benefit, magnitude, and prevalence of strategic voting with baseline parameters
comparing 3-party plurality results from countries using plurality/two-round runoff with 4-party IRV
results from countries using ranked choice.
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Figure A.13: Expected benefit, magnitude, and prevalence of strategic voting with baseline parameters
comparing 3-party plurality results from countries using plurality/two-round runoff with 4-party IRV
results from countries using PR.
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G Strategic voting, election outcomes and voter welfare

To analyze the impact of strategic voting on election outcomes, we first use Monte Carlo simula-
tion to estimate each candidate’s probability of winning at each iteration in each CSES case;49

we then compare outcomes at the 1st iteration (no strategic voting) and the 60th iteration
(widespread strategic voting).

As discussed above, strategic voting in plurality causes the initially trailing candidate’s
support to collapse; strategic voting in IRV has more complicated effects, with defections away
from trailing candidates being counterbalanced in some cases with shifts toward those candidates
and negative feedback playing an important role. Consistent with this, we find that strategic
voting affects election outcomes more in plurality than in IRV on average. For each case we
compute the Euclidean distance between the vector of victory probabilities at the 1st and 60th
iteration; the mean (median) distance in plurality is .105 (.041) compared to .048 (.003) in IRV.
Plurality is therefore also more susceptible to strategic voting in the sense that its outcomes
depend more on whether voters are strategic or not.

Turning to voter welfare, strategic voting seems to make voters on average slightly better
off in plurality and slightly worse off in IRV, though the impacts are small and the conclusion
depends on how we aggregate cases. Table 3 summarizes average expected utility – calculated
by combining candidates’ win probabilities with voters’ ratings of the parties – and the average
victory probability of the Condorcet Winner50 grouped by simulated system (plurality vs. IRV)
and iteration (1st vs. 60th). We find no difference across systems in either measure at the
first iteration; as voters become more strategic, both measures improve in plurality but worsen
in IRV, resulting in a statistically significant difference between systems at the 60th iteration.
Strategic voting helps voters in plurality on average here because the Condorcet Winner/average
utility maximizer is usually among the frontrunners, and strategic voting tends to help that
candidate; the effects of strategic voting on IRV outcomes are more mixed.

Finally, in Figure A.14 we report the distribution of within-case differences of voter welfare
metrics (average expected utility and Pr(Condorcet Winner wins)) when compared across both
iterations and simulated systems.

49We take 1M draws from the belief distribution for each iteration/case.
50We refer here to the Condorcet Winner among survey respondents.
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Table 3: Average Expected Utility and Pr(Condorcet Winner Wins) by Iteration and System

Average Expected Utility

Iteration/System Plurality IRV ∆ System

1 5.429 5.431
0.002
(0.301) [0.764]

60 5.436 5.423
-0.013
(-3.795) [0]

∆ Iteration
0.007
(1.287) [0.2]

-0.008
(-3.347) [0.001]

Pr(Condorcet Winner Wins)

Iteration/System Plurality IRV ∆ System

1 0.825 0.826
0.002
(0.173) [0.863]

60 0.838 0.82
-0.018
(-2.085) [0.039]

∆ Iteration
0.013
(1.267) [0.207]

-0.006
(-1.012) [0.313]

Note: Averages include case weights. Margins report weighted averaged
of between-iteration (bottom row) and between-system (last column) differ-
ences, along with (t-statistic) and [p-value]

Pr(C-Winner wins)

D (60 - 1 | IRV)

Pr(C-Winner wins)
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D (RCV - Plur | 1st Iter)

Pr(C-Winner wins)

D (RCV - Plur | 60th Iter)

Average Expected Utility

D (60 - 1 | IRV)

Average Expected Utility

D (60 - 1 | Plurality)

Average Expected Utility

D (RCV - Plur | 1st Iter)

Average Expected Utility

D (RCV - Plur | 60th Iter)

0.0 0.5 -0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 -0.5 0.0 0.5 1.0

-0.1 0.0 0.1 0.2 0.3 -0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 0.6

0

25

50

75

100

0

25

50

75

100

0

20

40

0

10

20

30

40

0

10

20

30

40

50

0

10

20

30

40

0

25

50

75

0

25

50

75

100

Frequency

S
ta

ti
s

ti
c

Figure A.14: Within-case differences of average expected utility and Pr(Condorcet Winner wins) when
compared across iterations (holding system constant) and system (holding iterations constant). Blue
lines indicate raw means across cases; red lines indicated weighted means across cases.
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H Convergence of the iterative polling algorithm

In this section of the appendix we provide additional evidence that (a) the iterative polling
algorithm converges at all in IRV; (b) it converges onto a seemingly unique equilibrium of ballot
shares. In plurality, we can infer the equilibrium behavior from the vote share paths in Figure 3
alone; as all voters with a sincere preference for C have responded by voting strategically for A
or B, the result is a (quasi-)Duvergerian equilibrium and everyone’s best response is to continue
voting as they did in response to the previous poll.51

In IRV, we cannot make the same inference as there is no general (analytical) characterization
of strategic voting equilibria. However, we provide evidence that the algorithm converges onto
a unique ballot share. We also provide evidence to suggest that this resulting equilibrium is
robust to parameter choice (s, λ) as well as the ‘starting point’ of the equilibrium.

Notation. Let v̄j,k(s, λ) denote the (weighted) IRV ballot share vector (with six items)
after the jth iteration and in CSES case k. This vector is also the expected result upon which
initial beliefs in the subsequent iteration j+1 are centered. For example, v̄1,AUS2013 denotes the
ballot shares at the end of the first iteration in the 2013 Australia case. This quantity, as defined
by Equation 13, is a weighted average of voters’ best response to initial beliefs in this iteration
(vBR

j,k (s, λ)), and the initial expected result at the beginning of the iteration (v̄j−1,k(s, λ)).

Next, let d(m,n) =
√

(m− n)(m− n) denote the Euclidean distance between two arbitrary
vectors of the same length. We then define, Dj,k (the quantity in Appendix H.1), as:

Dj,k = d(v̄BR
j,k (s, λ), v̄(j−1,k)(s, λ))

which is the Euclidean distance between the voters’ best response to any given iteration in
case k, and the ballot shares in the poll at the beginning of that iteration.52

Convergence onto a fixed point. In Appendix H.1, we report Dj,k (the distance between
voters’ best response and the expected result at the beginning of the iteration), and show that
the convergence behavior is robust to parameter choices.

Convergence onto an oscillating sequence. Appendix H.2 reports further context on
the oscillating behavior under IRV and shows that when comparing the distance between an
expected result and a lagged average of the algorithm output (smoothing any oscillation), the
distance converges towards zero.

Convergence onto the same point across parameter values. In Appendix H.3, we
provide evidence that the equilibria upon which the algorithm converges are robust to the
parameter choice of λ.

Convergence onto the same point across starting points. Furthermore, Appendix
H.4 suggests that the vote shares upon which the iterative polling algorithm converges in IRV
may hold irrespective of the starting point. Together, these results characterize the behavior of
the iterative polling algorithm under IRV and suggest that a general strategic voting equilibrium
in IRV may exist.

51The same logic, merely with inverted party names, holds for the few cases where the eventual equilibrium
pins A and C against each other.

52Alternatively, also denoted as the output of the algorithm in the iteration j − 1.
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H.1 Euclidean distances between best response and ballot share vector

We check the convergence of the polling algorithm for different parameter values of precision
(s) and strategic responsiveness (λ). We present, for each iteration j and every case k, Dj,k,
the distance between the ballot shares of best responses given certain parameter values, and the
ballot shares in the poll at the beginning of the algorithm (using the same parameter values). We
use a logarithmic scale to plot the distance, in order to highlight changes of a small magnitude
when the ballot shares do not move much anymore after multiple iterations.

In IRV (left panels), we see that for a handful of cases, the distances decrease continuously
and evenly. The remainder sees their distance drop until the 50th or 60th iteration before
stagnating at very small values (e−7 ≈ 0.0009). This behavior occurs because of the oscilla-
tions, whereby a small number of voters changes their strategic vote in a regular pattern, thus
preventing the algorithm from reaching a ‘true’ fixed point. In a setting with low strategic re-
sponsiveness (smaller values of λ), the distance decreases more slowly as convergence is slower;
in most cases, 250 iterations are not sufficient to reach full convergence. In contrast, with high
strategic responsiveness, the algorithm settles into a pattern where the poll-to-poll distances
are greater, since more voters are part of the ‘oscillation’. Although a few CSES cases are sen-
sitive to the choice of s, the broader convergence pattern and magnitude of oscillation distances
(conditional on λ) appear robust.

In plurality, convergence occurs in a very regular and even fashion – there are no cases
that get stuck in an oscillating pattern or stop converging towards zero. This corroborates
theoretical knowledge about equilibria in plurality. However, the speed of convergence and
variance between cases is sensitive to values of λ and s.
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H.1.1 Medium strategic responsiveness (λ = 0.05)
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Figure A.15: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for high (s = 85) belief precision and medium (λ = 0.05) strategic responsiveness.
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Figure A.16: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for low (s = 10) belief precision and medium (λ = 0.05) strategic responsiveness.
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Figure A.17: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for medium (s = 55) belief precision and medium (λ = 0.05) strategic responsiveness.
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H.1.2 Low strategic responsiveness (λ = 0.01)
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Figure A.18: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for high (s = 85) belief precision and low (λ = 0.01) strategic responsiveness.
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Figure A.19: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for low (s = 10) belief precision and low (λ = 0.01) strategic responsiveness.
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Figure A.20: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for medium (s = 55) belief precision and low (λ = 0.01) strategic responsiveness.
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H.1.3 High strategic responsiveness (λ = 0.10)
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Figure A.21: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for high (s = 85) belief precision and high (λ = 0.1) strategic responsiveness.
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Figure A.22: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for low (s = 10) belief precision and high (λ = 0.1) strategic responsiveness.
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Figure A.23: Logged distance between poll result at the beginning of the iteration and voters’ best
response to it in IRV (left) and Plurality (right), and the vote shares in the previous iteration’s poll.
Results for medium (s = 55) belief precision and high (λ = 0.1) strategic responsiveness.
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H.2 Euclidean distances between best response and lagged ballot share vec-
tor

To provide further context on the oscillating behavior under IRV, we report the Euclidean
distance (Figure A.24) between the resulting best response ballot shares after the poll at time
j of the algorithm, and the average of poll vote shares between times j − 20 and j − 10:

Dlag
j,k = d(v̄BR

j,k (s, λ), v̄((t−10, t−20), k)(s, λ))

Here, too, the quantity of interest decreases as voters become more strategic; the majority
of cases settles in a band between 0 and 0.01.53 This behavior indicates that although there are
changes from one iteration to another due to a small number of voters changing their optimal
strategic response, the overall vote share does not move in great distances across multiple
iterations. Occasional spikes occur when that pattern is disrupted and the vote share moves a
larger distance before settling into a new oscillation again. Altogether, the examination of vote
share distances along the iteration paths suggests that in IRV, the algorithm settles on either a
direct fixed point, or an oscillating pattern where only a small number of voters changes their
strategic response in a regular manner.
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Figure A.24: Distance between the shares of voters’ best responses after voters have been given a poll
in IRV (with λ = .05 responding strategically), and the average of the respective vote shares 10 to 20
iterations ago.

53Note that for other parameter values [not shown], the range of this band will vary, but the general pattern
holds.
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H.3 Comparison of convergence paths relative to baseline case

We provide evidence that the equilibria upon which the algorithm converges are robust to the
parameter choice of λ; we plot the distribution (across CSES cases) of distances between a jth
poll with certain parameter values, and the resulting vote shares after the 250th poll in the
baseline case (s = 85, λ = 0.05, Figure A.25), as well as after the 250th poll in the case with
the same s, but holding λ = 0.05 (Figure A.26).

Formally, the quantities of interest are:

Dbase
j,k = d(v̄j,k(s, λ), v̄(250, k)(s = 85, λ = 0.05))

Ds−comp
j,k = d(v̄j,k(s, λ), v̄(250, k)(s, λ = 0.05))

The results show that although the algorithm converges on different ballot shares conditional
on the choice of s – the densities of distances do not converge onto zero when compared to the
baseline of s = 85, λ = 0.05 (Figure A.25), the equilibrium is robust to the choice of λ: when
comparing distances across different values of λ, but holding s fixed (Figure A.26), we see
differences in how quickly the algorithm converges (which is what λ determines by definition),
but, ultimately, the distances converge towards zero.
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Figure A.25: Distribution of Euclidean distances across CSES cases between resulting vote shares in
jth iteration under given parameter combination (information precision, s, and strategic responsiveness,
λ) compared to 250th iteration in the baseline case (s = 85, λ = 0.05).
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Figure A.26: Distribution of Euclidean distances across CSES cases between resulting vote shares in
jth iteration under given parameter combination (information precision, s, and strategic responsiveness,
λ) compared to 250th iteration in the case with same s but λ = 0.05.
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H.4 Convergence under IRV with random starting points

In order to evaluate whether the CSES cases converge onto the same IRV strategic voting
equilibrium irrespective of the initial belief about ballot shares, we draw 100 random ballot
shares from a Dirichlet distribution with uniform density, and use these to initialize the polling
algorithm. Let q ∈ {1, ..., 100} denote the particular random draw. Formally, let ṽj,k(s, λ, ṽ0)
denote the ballot share vector after j iterations for CSES case k, where the algorithm was
initialized with the values s, λ, and a starting belief about ballot shares centered on v0. Then,
the ”random starting point distance to baseline case” refers to the distance between the ballot
share vector after the jth iteration for case k and a random starting belief centered on vq,
and the ballot share after the 250th iteration where the algorithm was initialized with baseline
parameter values (s = 85, λ = 0.05), and the sincere ballot share profile for that case. Formally,

d̃j,k,q = d(ṽj,k(s, λ, v̄q),v250,k(s = 85, λ = 0.05,vtrue))

Figure A.27 summarises the distribution of distances between ballot shares starting at ran-
dom points (with s = 85, λ = 0.05, i.e., baseline parameter values), and the ‘converged’ ballot
share after 250 iterations starting at each case’s sincere profile. Each point indicates the me-
dian, 90th or 99th quantile of the distribution of distances (y-axis) between the algorithm from
random starting points and the converged ballot shares (after 250 iterations) coming from the
sincere voting profile, for each case and after each iteration (x-axis). Formally, each point rep-
resents a summary statistic of all d̃j,k,q for each case k, and after each iteration j across all 100
random draws.
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Figure A.27: Summary of distances between case-specific distributions of distances between ballot
shares after iterations from random starting points, and the converged ballot shares in the baseline case
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I Robustness of expected benefit results to number of iterations

In this section, we present results from Figure 4 extended to 250 (rather than 60) iterations.
The results do not change substantially beyond 60 iterations.
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Figure A.28: Expected benefit, magnitude, and prevalence of strategic voting with high (s = 85) belief
precision, and medium strategic responsiveness (λ = 0.05).
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Figure A.29: Expected benefit, magnitude, and prevalence of strategic voting with low (s = 10) belief
precision, and medium strategic responsiveness (λ = 0.05).
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Figure A.30: Expected benefit, magnitude, and prevalence of strategic voting with low (s = 10) and
medium (s = 55, right) belief precision, and medium strategic responsiveness (λ = 0.05).
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